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SUMMARY 

 

Mammalian breathing activities consists of three phases – the inspiratory phase, 

the post-inspiratory phase, and the expiratory phase.  Experiments investigating the 

spatial organization of the neural respiratory control signals among brainstem neuron 

populations showed that the minimal experiment model for studying mammalian 

inspiratory activities is simply a brainstem slice containing the pre-Bötzinger Complex 

(PBC) region.  This preparation is generally referred to as the transverse slice preparation. 

The transverse slice preparation also contains a neuron population called the 

Raphé nucleus (RN). The neuromodulatory substances (e.g. serotonin, substance P, 

thyrotropin-releasing hormone) tonically released by the RN have been shown to 

modulate the activities of other respiratory-related neural networks in the preparation, 

such as the PBC region and the Hypoglossal Motor-nucleus (HMN).  Even though 

neuromodulatory effects mediated by second-messenger pathways have been widely 

studied in other disciplines such as systems biology, such efforts have been lacking in the 

area of respiratory control until recently.  Motivated by questions such as how external 

stress factors shown to manifest as different levels of neuromodulator release can affect 

the breathing activities itself, the PBC region and the HMN, especially their responses to 

neuromodulators, are central to the investigations presented in this document; since the 

PBC region has long been considered the “kernel” for respiratory rhythmogenesis, and 

the HMN produces motor-output controlling the upper airway.  In addition, anatomical 

evidence has indicated a complex connectivity pattern among the RN, the PBC, and the 

HMN. 

By exploiting the concept of emergent network properties and the hierarchical 

nature of networks, we first constructed an intracellular second messenger pathway 

model, and then incorporated the pathway model into previously developed single PBC 
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neuron & Hypoglossal Motoneuron (HM) models.  The new single PBC model neuron 

further serves as a basis for simulating network-level PBC region activities.  The 

methodology adopted allows us to dissect and examine the neural control signals 

generated by the PBC neuron, the HM, and the PBC region in silico, providing important 

basis for future investigations on the respiratory neural circuitry contained in the 

transverse-slice preparation. 

As will be discussed in this documentation, several important conclusions can be 

derived regarding to the respiratory neural control signals generated at the single PBC 

neuron level, the single HM model, and the level of the PBC region within the transverse 

slice preparation.  Since, with the incorporation of a second-messenger pathway model, 

the new PBC and HM single neuron model are able to simulate neuromodulatory effects, 

they represent the ideal building blocks for future investigations on the orchestrated 

neuromodulations in the transverse slice.  The significance of pacemaking PBC neuron in 

a network has also been supported by examining the electrical activities generated by our 

simulated PBC region.  Additionally, in another set of network-level simulations, it has 

been shown that the postulated anatomical organization of the PBC region (the small-

world topology) can support network-level rhythmogenesis.  Last but not least, the 

interactions between the two coupling types within the PBC region, e.g. the synaptic 

coupling and the gap-junctional coupling, have also been investigated.  The results show 

complicated thresholding phenomena in burst period at multiple structural levels resulting 

from changes in the bifurcation landscape, which are in turn due to variations in the 

strengths of the inter-neuron couplings.  These observations are in line with experiment 

results where the interactions between different types of couplings as well as different 

excitatory factors are examined in respiratory-related neurons. 
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1 INTRODUCTION 

 

Important across various scientific disciplines is the concept of emergent network 

properties.  These properties are characteristics of a network arising from the interactions 

among network components; they can neither manifest themselves nor be predicted 

unless the network is being examined in its entirety.  In the area of systems biology, it has 

been proposed that a pathway-based drug discovery and development process other than 

the molecular target-based process should be adopted, as the robustness of the metabolic 

pathways makes it unlikely that targeting some molecular target will have predictable and 

beneficial functional outcome (Kumar et al. 2006; Rajasethupathy et al. 2005).  In the 

area of neuroscience, where the functional outputs of neuronal populations control critical 

physiological functions, emergent network properties are especially important since a 

multitude of interactions exist among neurons.  These interactions can include but are not 

limited to chemical synapses, gap junctions (electrical synapses), neuromodulatory 

substances, intracellular age-dependent second-messenger pathways (Puzianowska-

Kuznicka and Kuznicki 2009), exogenous factors including external stimuli, and 

astrocytic integrations.  Consequently, one of the major issues in neuroscience today 

involves establishing the mechanistic link between the types of interactions within a 

neuron population and the spatial-temporal boundaries of the complex functional output 

of the neuronal network in question. 

In the area of respiratory rhythmogenesis, new experimental observations have 

led to the hypothesis that respiratory rhythm is a network emergent property rather than a 

direct manifestation of rhythmic pacemaking activities (e.g. intrinsic bursting activities) 

of some of the neurons in the respiratory neural network (Del Negro and Hayes 2008; Del 

Negro et al. 2008).  In fact, within the “kernel” for respiratory rhythmogenesis called the 

pre-Bötzinger Complex (PBC), the population of pacemaking neurons has been 
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consistently shown to be either intrinsic or conditional.  Contrary to the pacemakers that 

exhibit intrinsic pacemaking (e.g. bursting) properties when synaptically isolated, the 

pacemaking properties (e.g. bursting abilities) of conditional pacemakers are dependent 

upon serotonergic/noradrenergic neuromodulation (Doi and Ramirez 2008; Viemari and 

Ramirez 2006).  The remaining PBC population is characterized as silent non-

pacemakers, who exhibit either no activities or spiking activities when isolated, and 

respond to depolarization and serotonin/norepinephrine with intensified spiking activities.  

Contributing to the complexity of the collective output from the PBC region are 

experiment observations indicating that the PBC region is under tonic innervations from 

the Raphé neuron population, mediated by neuromodulatory substances such as serotonin 

(5HT), substance P (SP), and norepinephrine (NE) (Ptak et al. 2009).  Therefore, it is not 

without reason that when addressing the role of neural control in respiratory activities, 

recent efforts have not only focused on inter-neuron interactions, but also on examining 

the interactions among neuron populations (e.g. inter-nuclei interactions). 

Among all the available techniques applicable to obtain a better understanding of 

the emergent outputs of neuronal networks, computational modeling enables 

examinations of how isolated and controlled variations contribute to physiologically 

important functional network-level activities.  Furthermore, when certain parameters such 

as baseline component concentrations and rate constants from a specific cell type 

describing some chemical reaction of interest are not readily available due to un-resolved 

experimental complications, modeling methodology provides a starting point to study 

these important reactions by allowing for the possibility of adopting experimentally-

derived parameter values describing these reactions in other similar cell types.  Using the 

respiratory neural control circuitry in the brainstem transverse slice as our model system, 

the work presented here summarizes several projects utilizing such technique to focus on 

the investigation and categorization of important network emergent properties at multiple 

network structure levels.  This transverse slice respiratory neural circuitry includes the 
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Raphé nucleus, the PBC region, and the Hypoglossal Motor-nucleus (HMN), all of which 

are discussed in details in Section 2.1 (Figure 2-1).  The outline and logical flow of the 

projects are presented in Figure 1-1.  

 
 

Figure 1.1 Structure of the research presented. 

 

With discourses into studies which delve into the emergent properties in more 

generalized neural networks, the end goal of this research project is to resolve how a 

certain intracellular second-messenger pathway, how network topology and inter-neuron 

couplings can influence single-cell and network-level activities.  The results presented in 

this document will facilitate future investigation of some of the unresolved phenomena – 

such as long-term facilitation (LTF) – manifesting as network emergent properties in the 

area of respiratory neural control (Figure 1-2). 
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Figure 1.2 Manifestation of the effects of exogenous factors on network-emergent 

properties at different levels.  
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2 BACKGROUND & SIGNIFICANCE 

 

2.1 Significance of the Research Projects 

Breathing is a fundamental neurophysiological process involving the rhythmic 

activation of populations of spinal and cranial motoneurons required to sustain life and 

health.  Understanding the CNS mechanisms responsible for the generation, the 

maintenance, and the reconfiguration of the respiratory rhythm and pattern is required to 

understand the neural control of breathing in health and disease.  For example, the third 

leading cause of infant death in 2003 in the United States was Sudden Infant Death 

Syndrome (SIDS), accounting for 2162 deaths nation-wide (Mathews and MacDorman 

2006).  While SIDS is complex to diagnose and may have multiple causes, evidence 

suggests that abnormalities in the neural circuitry responsible for the generation and 

control of the respiratory rhythm (Carpentier et al. 1998; Guntheroth and Spiers 2002; 

Kinney et al. 1995; Obonai and Takashima 1998; Obonai et al. 1998) are involved in 

pathophysiological conditions such as SIDS.  In particular, these abnormalities may be 

due in part to a delay in neuronal development (Becker and Zhang 1996; Saito et al. 2001) 

and dysfunction of the medullary serotonergic system (Kinney et al. 2005; Panigrahy et al. 

2000; Paterson et al. 2006).   

We are still a long way away from fully understanding the dynamics of the 

complex circuitry that is responsible for the generation and control of the respiratory 

rhythm.  The spatial organization as well as the state-dependent respiratory pattern and 

rhythm generation have been elucidated in both experiments and computer simulation 

work (Rubin et al. 2009; Rybak et al. 2007).  Other recent experimental advances are 

exemplified by various reduced preparations for investigating respiratory rhythm.  These 

reduced preparations are the en bloc (Feldman et al. 1991; Smith et al. 1990; Suzue 1984), 

the transverse slice (Smith et al. 1991), and the sagittal slice preparations (Mellen et al. 
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2002).  These reduced preparations from neonatal rodents have provided powerful tools 

for studying the CNS respiratory circuitry in a highly reduced setting that still maintains 

critical aspects of the respiratory rhythm.  Beyond advances in experiment preparations, 

research publications in the past two years have also indicated significant movement 

toward emphasizing how functional network level output manifests differently depending 

upon various neuromodulatory factors at play, the downstream second-messenger 

pathways triggered by these neuromodulatory factors, as well as the direction of 

interactions among various nuclei in the respiratory circuitry (Doi and Ramirez 2008; 

Lega et al.; McIntyre et al. 2004; Ptak et al. 2009). 

In the work presented here, the focus is the respiratory neural control circuitry 

contained in the transverse slice preparation (Figure 2-1) containing the PBC region, and 

which has been shown to be the minimal experiment model for studying the inspiratory 

activity in mammals (Ruangkittisakul et al. 2008; Rybak et al. 2007).  The ultimate goal 

is to elucidate how the interactions within and among the distinct neuron populations 

contained in the circuitry affect physiologically important neural outputs such as those 

from the PBC region or the HM nucleus.  While the long-term goal is to develop an 

integrated computational model of the mammalian respiratory circuitry in the transverse 

slice (Figure 2-1), the intermediate steps accomplished here are the construction of new 

generation single neuron models (Figure 1-1), as well as the completion of network level 

studies on emergent properties either in a general sense or specific to the respiratory-

related neuron populations (Figure 1-1). 

Based on previously developed models, the new generation ion-channel based 

models of respiratory-related neurons constructed are those of the Raphé neuron (Chapter 

7), the PBC neuron (Chapter 5), and the HM neuron (Chapter 6) found in the transverse 

slice preparation.  The important aspect that sets these new neuron models apart from 

previous work is the inclusion of the interactions among ion-channel properties, 

intracellular ion concentration, and second-messenger pathways.   Together, these 
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mechanisms facilitate the simulated electrical profiles to both qualitatively and 

quantitatively reproduce experimental recordings of neuronal activities with or without 

the presence of multiple modulatory factors such as the pH value or neurotransmitters 

(e.g. serotonin, norepinephrine).  As will be detailed in later chapters, the new PBC 

model neuron can simulate two different pacemaking (e.g. bursting) modes.  Per 

experiment observations, each of these two pacemaking modes can be selectively 

abolished by the application of Riluzole and Cadmium (Cd) (Del Negro et al. 2002a; 

Pena et al. 2004; Thoby-Brisson and Ramirez 2001).  The new model faithfully 

reproduces features of the two pacemaking modes by including distinct mechanisms 

responsible for the pacemaking properties in each mode – namely, the conductance of 

persistent sodium current (gnap) and the conductance of calcium-activated cationic current 

(gcan).  On the other hand, the second-messenger signaling pathways in the new HM 

neuron model qualitatively reproduces serotonergic modulatory effects as seen in 

experiments (Feldman et al. 2005; Neverova et al. 2007).  Furthermore, the new HM 

model provides a basis for identifying possible underlying mechanisms for long-term 

plasticity such as long-term facilitation (LTF).   With careful evaluations, the principals 

derived from such plasticity which not only depends on the stimulus type and strength, 

but also on stimulus pattern, may be generalized to explain similar phenomena observed 

in other animal models. 

In summary, by assimilating novel data from these reduced preparations, valuable 

insights derived from studies regarding to network topology and multiple inter-neuron 

interactions at the neural network level, and the pathway modeling methodology 

traditionally adopted in the discipline of systems biology – we have developed a series of 

new computation models of critical neural components of the respiratory pattern-

generating network.  These models can eventually serve as the basis of a new transverse 

slice model and beyond (e.g. a model of the brainstem respiratory circuitry), which can 

potentially facilitate the investigation of important emergent functional output.    
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The following sections contain summarizing background descriptions of the 

current and pressing concepts, topics, and techniques specific to the area of respiratory 

control relevant to the defined scope of this work.  Since the majority of the work 

presented in this document is based on improved versions of single neuron models 

published in Purvis et al. 2007 as well as Purvis and Butera 2005, these neuron models 

will be reviewed in a section after the concept of electrical & chemical signaling in neural 

systems has been introduced.  The review on previous models will be followed by a brief 

description on the technique of nonlinear bifurcation analysis, which is frequently 

adopted throughout this document in an attempt to understand simulated electrical 

activities of neurons in a mathematical context.  Furthermore, details will be provided on 

the general perspectives of how commonly identified factors such as network topology, 

intra- and inter-nuclei interactions, and neuromodulatory factors acting via second-

messenger pathways may exert their influences on the emergent properties of various 

networks in the model system, e.g. transverse slice preparation. 
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Figure 2.1 Spatial organization of the respiratory neural circuitry in neonatal rat 

transverse slice preparation. Panel A. Conceptual illustration of tonically firing neurons and Raphé 

neurons (yellow), pBC neurons (orange), pre-motor and motoneurons (blue) and putative synaptic 

connections.  The green arrow indicates the direction of influence mediated by neuromodulatory substances 

(Glu: glutamate, 5HT: serotonin, SP: substance P, GABA: γ-Aminobutyric acid), with the preceding plus 

sign indicating an excitatory effect and the minus sign indicating an inhibitory effect. Panel B. 

Electrophysiologically identified transverse slice respiratory circuit neurons, morphologically reconstructed 

from representative neurons filled with neurobiotin during whole-cell patch-clamp recording, are PBC 

neurons, including pacemaker neurons with intrinsic bursting properties (red) and non-pacemaker neurons 
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(green), pre-motoneurons (preMNs, blue), and hypoglossal motoneurons (HMs, black).  Figure adopted 

from Ptak et al. 2009. 

 

2.2 Neuronal Signaling – ion channels, synapses, gap junctions and more 

The essential function of all nervous systems is signaling, or information transfer, 

both intra-cellularly from one part of a cell to another, and inter-cellularly between cells.  

For the purpose of providing a solid basis to understanding the research work presented 

here, the emphasis in this section will be placed on the following two topics: 1.) the 

generation of action potential 2.) the two types of highly specialized structures – chemical 

synapses and electrical synapses (e.g. gap-junctions) – responsible for intercellular 

signaling.   

Ion Channels underlie electrical signaling in neurons 

Within each neuron, signaling is accomplished by transmission of electrical 

activity in the form of an “action potential” (AP, Figure 2-2, Panel A) from one part of 

the cell to another.  An AP is a large all-or-none fluctuation in the membrane potential.  

This membrane potential (V) is a direct result of an unequal distribution of electrical 

charges on the two sides of the membrane.  The distribution of electrical charges is not 

static.  In fact, movement of ions across the plasma membrane can be facilitated by 

specialized membrane proteins called ion channels.  The ion channels are not inert pores 

in the membrane; on the contrary, they can undergo rapid conformational changes 

between an open state (e.g. able to conduct ions) and a closed state (e.g. not allowing ions 

to pass).  The permeability of these ion channels, among other factors, is dependent upon 

time and membrane voltage (V), which is in turn dependent upon the re-distribution of 

ions across membranes (ΔV).  A direct result from such two-way dependency is an 

orchestrated sequence of ion movements required to generate an action potential.   
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Figure 2.2 A typical action potential and the electrical circuitry representation of a 

Hodgkin Huxley style neuron model. Panel A illustrates the all-or-non nature of an action 

potential; the figure is adopted from http://mindoutpsyde.com/forums/index.php?topic=144.  Panel B 

illustrates the components of a typical Hodgkin-Huxley style model showing how membrane voltage is 

determined as the electrical potential difference across the cell membrane; this figure is adopted from 

http://en.wikipedia.org/wiki/File:MembraneCircuit.jpg.  The lipid bi-layer cell membrane is represented as 

a capacitance, and the voltage-gated sodium & potassium channels are represented by time-dependent and 
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voltage-dependent conductances.  On the other hand, the leak channel and the chloride channel are 

represented by linear conductance (gL, gcl).  The electrochemical gradient as the driving force behind ion 

flows are presented by the batteries (e.g. ENa+, EK+).  The arrow indicates current, for example, the 

sodium current is presently flowing from the extracellular to the intracellular space. 

 

Due to a direct analogy between ion movements in electrical circuit, the ion 

channels can be modeled in the form of a parallel conductance-resistor electrical circuit 

(Figure 2-2, Panel B).  Specifically, the relationship between movement of charged ions 

across plasma membrane through ion channels and the fluctuation in membrane potential 

translates into the following equation: 

Cm dV/dt = ∑ Iionic  

where Cm is the membrane capacitance and ∑ Iionic is the sum of ionic movement (current) 

inward or outward across the membrane.  Using the convention illustrated in Figure 2-2, 

it can be deduced that an inward movement of positively charged ions (inward current) 

will cause an increase in the membrane potential.  This inward current is described as 

“depolarizing” and the increase in membrane potential is described as a “depolarization”.  

In most cases, the ionic movement is subject to the changes in ion-channel conductance 

and the electrical field created by charge distribution on both sides of the plasma 

membrane.  Each individual ion current can be modeled in the form of the following 

equation: 

 Iionic = gion-channel * (V-Eion) 

where E ion is a constant term approximating the electric field due to the ion distribution 

across the plasma membrane and V is the membrane potential. The term gion-channel is the 

ion channel conductance, which is itself a function of V and modeled as a combination of 

differential equations: 

 gion-channel = gmax * Π xi  

dxi / dt = F(V, t) 
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where gmax is the maximum conductance for the current.  On the other hand, the value of 

the gating variable xi describing the conformational change of the ion channel depends on 

both time and membrane voltage. 

Throughout this presentation, the neuron models introduced were constructed 

based on the same concepts behind the equations outlined in this section. 

Electrical Synapse  

Intercellular communication through gap junctions is conceptually the very 

simplest form of cell-to-cell interaction.  Small molecules and ions in one cell diffuse 

through pores in the plasma membrane directly into the plasma of a neighboring cell.  

These bi-directional connections between nerve cells via gap junctions are called 

“electrical synapses”, due to the fact that this form of information transfer involves rapid 

electrical signaling.  These electrical synapses allow the electrical activity of one neuron 

to be registered quickly in neighboring neurons and have been shown to allow groups of 

neurons to synchronize their electrical activities (Rohr 2004; Tribulova et al. 2008). 

Chemical Synapse 

Chemicals that are released from a neuron (pre-synaptic) and alter the excitability 

of another neuron (post-synaptic) are termed “neurotransmitters”.  A large number of 

such neurotransmitters act as extracellular signals to mediate the uni-directional 

information transfer among neurons through a special structure called “chemical 

synapse”.  These chemicals include amino acid, organic compounds, as well as small 

peptides, and are contained in vesicles for storage.  Typically, these chemicals either 

directly activate the ion channels of the post-synaptic neuron, thus causing ions 

movement – or trigger a series of post-synaptic intracellular events – to alter the 

membrane potentials of the post-synaptic neurons.  When a neuron is stimulated, e.g. 

when external factors cause the membrane potential of a neuron to fluctuate, the 



www.manaraa.com

 14 

transmitter-containing vesicles fuse with the neuron’s plasma membrane and release their 

contents into the synaptic cleft.  The chemical synapse can be either excitatory or 

inhibitory, and the model formulation of chemical synapses demonstrates this 

relationship of dependency of the post-synaptic ion movement on the pre-synaptic 

membrane voltage: 

dS/dt = F(Vpre, S); Ipost = Gsyn*S*(Vpost – Esyn) 

where S is the activation parameter modeling the process of vesicular secretion of 

neurotransmitters, Vpre is the pre-synaptic voltage, Vpost is the post-synaptic voltage, and 

Ipost is the post-synaptic ion current triggered by the neurotransmitter released pre-

synaptically. 

2.3 Review: previous PBC neuron model and Hypoglossal Motoneuron model 

The new single PBC neuron model and the single HM model presented in Chapter 

5 and 6 of this document are based on previously published models (Butera et al. 1999a; 

Purvis and Butera 2005; Purvis et al. 2007).  By incorporating a second-messenger 

pathway model into these base models, these new models are able to simulate 

serotonergic neuromodulatory effects observed in experiments.  In the case of the new 

PBC neuron model, it is now possible to simulate recent experiment results (e.g. two 

types of pacemakers, see Chapter 5) that have been the source of controversy in the area 

of respiratory rhythmogenesis.  Since the new models can be considered as extensions of 

the previous models, a brief summary is provided here in an attempt to provide readers 

with the necessary background information. 

Single PBC neuron model 

The PBC neuron model presented in Purvis et al. 2007 is a single-compartment 

Hodgkin-Huxley style model (Hodgkin and Huxley 1952).  The model consists of four 

ionic currents 1.) a fast Na
+
 current and a leak current, 2.) a delayed K

+
 current, 3.) a 
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slowly inactivating persistent Na
+
 current (Inap), and 4.) a K

+
 - dominated leak current.  In 

this model, the persistent sodium current (Inap) is critical for the model neuron’s voltage-

dependent bursting activity.  Other currents in this model include a tonic current and a 

synaptic current, where the former current represents the non-NMDA EAA-mediated 

(Excitatory Amino-Acid) drive received by a single PBC neuron from other tonically 

spiking neurons in experiment preparations.  The synaptic current, on the other hand, is 

an excitatory EAA-mediated drive between individual PBC neurons (Butera et al. 1999a; 

b).  In short, the membrane potential of the model is determined by the following 

equations.  The parameter naming convention used here follows that introduced in the 

previous sub-section.  The readers are further encouraged to refer to Butera et al. 1999a, 

Purvis et al. 2007, or Appendix B for the equations used in this model. 

Cm dV/dt = ∑ (Iionic + Itonic + Isyn + Ileak); 

Iionic = gmax * x * (V – Eion); where the gating variable x is formularized as follows. 

 dx/dt = [x∞(V) – x]/τx(V);  

where x∞(V) = 1/[1 + exp((V-θx)/σx)] as the steady-state voltage-

dependent activation or inactivation function of x, and τx is the voltage-

dependent time constant determined by the following equation: 

  τx(V) = τx/cosh[((V- θx)/2σx)] 

Ileak = gleak * (V-Eleak); the leak current is modeled as an ohmic current, 

Itonic = gtonic * (V-Etonic) 

Assuming the binding of transmitter is rapid due to non-NMDA glutamatergic 

receptor activation (Butera et al. 1999b), the synaptic current Isyn can be modeled 

as: 

Isyn  = (∑ (gsyn * S)) * (V – Esynaptic), where dS/dt = [(1-S)*S∞(V) – k*s]/τs 

Single HM neuron model 



www.manaraa.com

 16 

The HM neuron model presented in Purvis and Butera 2005 does have its 

drawbacks due to limited information on 1.) ionic currents in motoneuron types other 

than those in neonatal rats, 2.) 3-D morphology of the HM neuron, and 3.) development 

changes in ion current properties and the neuron’s morphology; nevertheless, the model 

(Purvis and Butera 2005) is able to reproduce several electrophysiological features of the 

HMs.  Therefore, this model is chosen to be the basis of work focusing on serotonergic 

neuromodulatory effects of HMs to be presented in Chapter 6 of this document. 

The previously developed HM neuron model has ten currents, 1.) a fast sodium 

current, 2.) a persistent sodium current, 3.) a delayed rectifying potassium current, 4.) a 

low voltage-activated calcium current, 5.) two high voltage-activated calcium current, 6.) 

calcium-induced potassium current, 7.) a fast transient potassium current, 8.) a hyper-

polarization activated depolarizing current, and 10.) a leak current.  The equations for the 

aforementioned currents also follow the Hodgkin-Huxley formalism as those in the PBC 

neuron model.  The readers are encouraged to refer to Purvis and Butera 2005 for detailed 

discussions on how the ten currents interact with each other to reproduce experiment 

observations.  The equations used in this model can also be found in Appendix B. 

2.4 Nonlinear Bifurcation Analysis 

Nonlinear bifurcation analysis is a tool adopted in this work to analyze the set of 

non-linear ordinary differential equations (ODEs) used to describe single-cell model 

neurons (Section 2.2).  The purpose of the bifurcation analysis is to elucidate how the 

quasi steady-state solution of a selected model variable of interest behaves at different 

values of the bifurcation parameter.  In this work, the bifurcation parameter is often used 

in association with quasi-steady-state assumptions and is a model variable that normally 

varies at a time scale much slower than other state variables in the model.  In all the 

bifurcation analyses presented in this work, the model variable of interest is the 
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membrane voltage of neuron manifesting as the pacemaking, e.g. bursting, activities 

(Figure 2-3, top trace in the left portion) in the PBC neuron.   

 

 
 

Figure 2.3 The bifurcation diagram using the PBC model neuron as an example.  The 

neuron’s membrane voltage (V) and the corresponding variations in the activation variable for the 

persistent sodium current (h) are shown on the left.  The bifurcation diagram is shown on the right, where 

the bursting trajectory is super-imposed in green.  The color black indicates stable steady state solution; the 

color brown indicates the unstable steady state solution.  The color red indicates period solution (thick: 

unstable, thin: stable). 

 

Using the PBC model neuron operating in the pacemaking mode sensitive to 

Riluzole application (Section 2.1) as an example, the top trace in the left portion of 

Figure 2-3 illustrates the typical bursting activity.  The corresponding variations in 

persistent sodium current activation (h, bifurcation parameter) observed in the PBC 

neuron are shown in the bottom-left portion of Figure 2-3.  The result from bifurcation 

analysis is illustrated in the right portion of Figure 2-3.  With the bursting trajectory from 

the top-left super-imposed (green) on the bifurcation landscape, the bifurcation analysis 

shows how the value as well as the stability of the solution of the membrane voltage (V) 

changes as the activation level of persistent sodium current varies. 

2.5 Network Topology 

Previous research has provided anatomical evidence showing that in some cortical 

regions in the mammalian brains are inter-connected according to a small-world (SW) 
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network topology (Hartelt et al. 2008).  In addition, results from modeling studies (Netoff 

et al. 2004; Ponten et al. 2007) conducted previously demonstrate a dependency of 

network activities on network topologies.  For example, in Netoff et al. 2004, it has been 

shown that regular network firing activities intensifies to “seizing” activities, and 

eventually transitions into bursting activities as network topology changes from regular 

lattice to SW, and eventually to random connectivity; where, in general terms, a network 

with a regular lattice topology is a network where each neuron is connected to a specific 

number (k) of its nearest neighbor.  Starting from a network with regular lattice topology, 

a SW network topology can be constructed by reconnecting (pr(reconnection) = p) these 

synaptic projections to randomly chosen post-synaptic neurons.  Lastly, as the name 

suggests, a network exhibiting a random network topology is a network where synaptic 

projections are randomly established between pairs of neurons.  Furthermore, starting 

from a network with regular lattice topology, the random network topology can be 

achieved when the reconnection probably, e.g. pr(reconnection), is set to 1. 

Various formal measures have been developed to characterize the topology of a 

network.  A few examples of these measures include averaged path length (L), clustering 

coefficient (C), degree, closeness, betweenness centralization, and betweenness centrality, 

among which two of the most commonly used measures are the averaged path length and 

the clustering coefficient.  The averaged path length (L) is the average number of steps, 

i.e. nodes, along the shortest path one must traverse between all possible pairs of nodes in 

a network; whereas the clustering coefficient (C) measures the density of local 

connections as the ratio between the actual number of local connections and all possible 

local connections within a neighborhood.  In a “small-world” network, groups of nodes 

are neighbors of each other (large C); however, most nodes can be reached in a small 

number of steps from other nodes in the network (low L).  Therefore, the SW network 

topology is characterized by a low L and a high C.  Similarly, the regular lattice network 
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is characterized by a high C and a high L, and the random network is characterized by a 

low L and low C. 

As previous research has established a link between the SW network structure and 

“seizure-like (e.g. seizing)” or bursting activities (Netoff et al. 2004), the SW network 

topology that has been studied extensively in areas such as epilepsy where network 

synchronization is of extreme importance (Netoff et al. 2004; Ponten et al. 2007).  Other 

network topologies have also begun to receive notice in the area of neuroscience, as it has 

been postulated that the changes in respiratory pattern during embryonic development 

associated with the cause of Rett syndrome can be explained by the phase transition of 

these two network structures (Mironov 2009; Mironov et al. 2009).  Furthermore, specific 

to the work presented in this documentation, recent imaging work using enhanced green 

fluorescent proteins to label both the neuronal cell bodies and dendrites of neurons 

contained in the respiratory kernel (e.g. the PBC region) has shown that the neural 

organization of the PBC region is modular and characterized by “clusters” typical of both 

the “small-world” and the “scale-free” network structures (Hartelt et al. 2008). 

 

 

Figure 2.4 An examples of small-world network – the “caveman” graph (Watts 

1999).  Clusters of caves are interconnected to each other; these inter-caves connections form the edges of 

the larger “ring” and were transferred from within each cave.  The readers are encouraged to refer to page 

102~109 of Watts 1999 for detailed ruminations on this interesting network topology. 
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2.6 Summary: Investigating Network-Level Activities in the Transverse-Slice 

Respiratory Circuitry 

As briefly outlined in the previous section, the PBC and neighboring respiratory-

related neural populations in the transverse slice are responsible for generating and 

shaping the in vivo respiratory rhythm where different rhythmic patterns emerge as the 

interaction among neurons varies.  The variations in rhythmic patterns can be due to 

either changes at the cellular level, e.g. ionic flux dynamics, changes at the network level, 

e.g. synaptic efficacy introduced in the previous sections, or changes at how the neural 

populations interact with each other (Ptak et al. 2009).  Previous research work has 

demonstrated that these variations can also be induced by exogenous modulatory factors 

such as 5HT (Richter et al. 2003), substance P (Gray et al. 2001; Pena and Ramirez 2004; 

Ptak et al. 1999), and pH levels (Koizumi et al.). 

These neuromodulatory factors assert their influences differentially on various 

types of respiratory neurons by either directly altering ion channel conductance or by 

triggering a second-messenger signaling cascade that eventually leads to changes in 

membrane potential.  Specifically, endogenously activated 5HT2A receptors are required 

for maintaining fictive respiratory activity in transverse slice by modulating the persistent 

sodium conductance (gnap) in both Cd-sensitive and Cd-insensitive pacemaker neurons 

via a PKC pathway (Pena and Ramirez 2002).  Substance P, on the other hand, modulates 

network activities by producing slow depolarization via activation of a low-threshold 

Tetradotoxin (TTX)-insensitive Na
+
-dominant cationic current (Pena et al. 2004).  While 

both 5HT and substance P modulate neuronal activities with time-dependent 

depolarization-related mechanisms, pH variations act on two-pore potassium TASK 

channels that form a prominent leak conductance and display little time or voltage 

dependence (Koizumi et al.).   
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The neuromodulatory factors do not act in isolated fashion, as different factors 

might have a common modulatory target.  For example, in addition to being sensitive to 

pH in a narrow physiological range (Bayliss et al. 2001; Patel and Honore 2001), TASK 

channels are also subject to 5HT modulation (Talley et al. 2000).  The PKC pathway that 

plays an important role in the modulatory effect mediated by 5HT2A receptors can also 

induce changes in neuronal activity via alterations in intracellular calcium dynamics 

(Feldman et al. 2005) as well as changes in metabotropic glutamate receptor (mGluR) 

activation (Francesconi and Duvoisin 2000).  The latter target, e.g. the metabotropic 

glutamate receptor, has also been demonstrated to selectively control “fictive sighs” in 

vitro but have no effect on fictive eupnea (Lieske and Ramirez 2006).  The PKA pathway 

down-stream of G-protein coupled receptor for excitatory norepinephrine also putatively 

modulates inspiratory-phased inhibition prevalent in neonatal hypoglossal motoneurons 

(Saywell and Feldman 2004), and is consequently essential for maintaining the balance 

between excitation and inhibition in hypoglossal motoneurons (HMs). 

In addition to the aforementioned excitatory factors, respiratory-related neurons 

including PBC, Raphé, hypoglossal motoneurons have also been shown to rely on their 

GABAergic as well as glycinergic transmission to maintain the overall network rhythmic 

discharge (Singer and Berger 2000).  Furthermore, the existence of electrical couplings in 

respiratory-related neurons has been verified (Rekling et al. 2000) and their contributions 

cannot be overlooked.  While NMDA receptors constitute the largest excitatory drive in 

hypoglossal neurons during inspiration, previous research indicates that gap-junction 

couplings are also actively involved (Wang et al. 2002).  It has also been shown that the 

bath application of gap-junctional blockers in both the transverse slice and the en-bloc 

preparations modulate rhythmic inspiratory activities at multiple time scales (Bou-Flores 

and Berger 2001; Elsen et al. 2008).  The fact that neurons existing in the transverse slice 

that constitute the respiratory circuitry of interest communicate with each other via local 
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electrical coupling as well as synaptic connections which can be local or long-range 

projections provides grounds for further investigations detailed in later chapters. 

Due to the compounding nature of all the factors that can significantly affect 

functional network-level output, a modeling study that takes into account each individual 

mechanism as well as interactions among these pathways can lead to a better 

understanding of respiratory rhythmogenesis in vivo.  The architecture of the model 

system – the respiratory neural circuitry in the transverse slice – used in this work to 

study the complex interactions outlined above can be summarized as follows (Figure 2-1). 

Tonically firing neurons in the Raphé nucleus (RN) project to the PBC and have 

been shown to co-release 5HT, SP, and thyrotropin-releasing hormone (TRH); additional 

tonic neurons providing glutamatergic input to the PBC are found throughout the slice.  

The PBC axons project contralaterally through the midline to the PBC on the opposite 

side of the slice. In addition, axon collaterals of some PBC neurons project to the pre-

motor nucleus (preMN) region.  In contrast, the preMN region projects ipsilaterally to 

hypoglossal motornucleus (HMN).  Thus the output of the PBC projects to the HMN via 

a two-neuron pathway that is ipsilaterally preserved.  

In the following chapters, results from a series of simulations studies based on this 

model system will be detailed to illustrate the results of our efforts to investigate how 

neurotransmitters, type and strength of inter-neuron couplings, and network topology, can 

affect outputs at either the single-cell level or the level of an individual nucleus.  

Additionally, several future investigations that can be essential to further our knowledge 

in the area of respiratory neural control are proposed in the last chapter of this document.
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3. NETWORK-TOPOLOGY DEPENDENT NETWORK-LEVEL 

PHENOMENA
1
 

 

3.1 Abstract 

 “Bursting” is a dynamic phenomenon where episodes of neural activities are 

punctuated by periodic episodes of inactivity.  At the single cell level, this phenomenon is 

frequently referred to as “pacemaking”, where episodes of action potentials are 

punctuated by periods of silence.  Typically, the process for burst initiation as well as the 

slower processes underlying burst termination at this level can be attributed to the 

interactions between fast and slow ion channel properties, calcium-dependent processes, 

or synaptic depression. 

Single-cell level bursting activities are ubiquitous in neural systems.  Network-

wide rhythmic bursts of electrical activities in a neural network, characterized by 

inactivity-punctuated episodes of action potentials from all or a large portion of the 

neuron population, are also present in a variety of neural circuits.  Examples include 

components of the respiratory rhythm generating circuitry in the brain stem (Del Negro et 

al. 2002b), spontaneous activity in the neonatal rat spinal cord (Bracci et al. 1996), and 

developing neural networks in the retina of the immature ferret (Harris et al. 2002).  In 

most cases, the recurrent excitation through excitatory synaptic connections determines 

burst initiation, and the slower kinetics of ionic currents or synaptic depression at the 

single cell level collectively results in burst termination at the network-level.   

                                                 
1
 The majority of the work presented in this chapter is published as “Bursting without slow kinetics: a role 

for a small world?” Neural Comput. 2006 Sep;18(9):2029-35, of which the author of this document is the 

second author.  The author of this document reproduced all results published in the paper, and contributed 

independently to the investigation of the burst termination mechanism, as well as to establishing the link 

between the value of synaptic delay and network-level “seizing” or “bursting” activities.  All figures, unless 

otherwise specified, are produced independently by the author of this document, 
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The work presented in this chapter explores another mode of network-level 

rhythmogenesis (e.g. rhythm generation); namely, the bursting phenomenon in a network 

where no slow processes exist at the single-cell or synaptic level.  Our investigation 

indicates that the bursting phenomenon critically depends on the connectivity of the 

network characterized as a small-world (SW) network.  Furthermore, the progressive 

synchronization of network activities within each burst serves as the slow process which 

underlies burst termination. 

3.2 Methods 

To examine the direct contribution of the connectivity pattern among neurons to 

network-level activities, we utilize a paradigm detailed previously (Watts and Strogatz 

1998) to modify the network structure from a localized connection in conjunction with 

utilizing the Morris-Lecar (ML) model as the component neurons.   

Morris-Lecar Neuron Model 

The ML model was originally developed to characterize the electrical activity of 

the barnacle muscle fiber (Morris and Lecar 1981).  The model consists primarily of two 

voltage-dependent ion channels – an inward Ca
2+

 channel and an outward K
+
 channel.  

Both channels possess voltage-dependent activation, and neither channel possesses 

voltage-dependent inactivation.  The ML model is considered a prototypical neural 

oscillator.  It possesses the general characteristics of the activity “envelope” of bursting 

neurons. 

In response to an injected current pulse, the firing activity of ML model neuron 

typically consists of an excitation followed by a repolarization phase (Figure 3-1, Panel 

A).  The ML model is distinct from the typical canonical neuron model (e.g. Hodgkin-

Huxley or Integrate-and-Fire model) in its response to two successive transient current 

pulses (Figure 3-1, Panel B & C).  An action potential developed by a canonical model 
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has a well-defined absolute and relative refractory period.  In contrast, due to the 

 

 

Figure 3.1 Response of the ML model neuron to successive transient current pulses 

or constant current injection.  In Panel A through C, the black horizontal dashed line indicates the 

threshold of -20 mV; whereas the blue vertical dashed line indicates the time at which the transient current 

plus is applied. Panel A shows a typical Action Potential (AP) produced by an ML model neuron, the green 

arrow indicates the excitation phase, and the red arrow indicates a repolarization phase.  Panel B & Panel C 

show either an extended repolarization phase or a threshold-crossing event can occur depending on the 
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timing when the second transient current pulse is administered.  In Panel D, a series of spiking activities 

can be elicited by applying a background current of 2.5 μA/cm
2
. 

 

lack of an inactivation mechanism, the ML model has no absolute refractory effect.  

Consequently, the ML model can respond to an input at any phase during excitation and 

repolarization.  In particular, as shown in Figure 3-1 Panel B, the time the ML membrane 

voltage spends above the threshold is extended when the membrane potential is already 

above the threshold when the second input arrives, e.g. the repolarization phase is 

delayed.  On the other hand, if the membrane potential is below the threshold but above 

rest when the cell receives the second input, a threshold-crossing event is triggered.  This 

phenomenon is consistent even if the amplitude of the second input is significantly 

smaller than that of the first input (Panel C, Figure 3-1).  Such dynamics where the 

electrical profile can be modulated in shape and duration with successive excitation are 

more akin to the properties of bursting instead of spiking in individual neurons, therefore 

the notion of the ML model as a characteristic model for the “envelope” of bursting 

activity.  Examples of previous computational works exploiting this property of the ML 

model include Skinner and Mulloney 1998 and Montejo et al. 2002. 

Network Connectivity 

The structure of any given networks can be qualified by the network’s 

characteristic path length (L) and clustering coefficient (C).  As introduced in Section 2.3, 

L is calculated as the mean shortest path length between any two neurons in the network; 

whereas the clustering coefficient C of the network is calculated as the averaged ratio 

between the number of connections existing within a neighborhood of k neurons and the 

maximum number of possible connections in the same neighborhood across the entire 

network.  In terms of these two measures, a local regular network is a network exhibiting 

large C and large L, and a random network is a network exhibiting small C and small L.   
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In the work presented here, a systematic approach was applied to construct a 

variety of networks whose structures fall under 3 different characterizations (Newman 

and Watts 1999).  The substrate of such construction is a “neuron ring” 

 

 

 

Figure 3.2 Different network topologies as a result of different reconnection 

probabilities.  (Figure adopted from Watts 1999) Starting from a “neuron-ring” (k = 3, leftmost panel), 

the network structure transitions to the small-world topology and eventually to a random network as the 

reconnection probability increases.  As an illustration to the reconnection scheme, the connection specified 

in red in the left-most panel was reconnected with probability p to another randomly selected neuron in the 

population in the middle panel. 

 

(Figure 3-2), where each neuron projects synaptic connections to k of its nearest 

neighbors.  Starting from this regular network, a rewiring procedure where each synaptic 

projection is reconnected with probability p to another neuron randomly selected from the 

network is then implemented.  The process is systematically repeated for various values 

of p ranging from 0 to 1.  As the value of p is increased from 0 in this range, the network 

topology changes from local and ordered to random at two extremities, with intermediate 

p values resulting in small-world topologies characterized by predominantly local and a 

few long-range connections (large C and small L). 

Simulation Set-up 

A series of networks consisting of 512 ML model neurons arranged as a neuron-

ring according to the regular network topology is constructed for this work.  In these 
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networks, the neurons are numbered sequentially from 0 to 511, and the connections 

between pairs of neurons are purely synaptic with a fixed strength of 0.01 μS.  Out of the 

512 ML model neurons, 10 consecutive neurons (e.g. neurons numbered 0~4 and 

507~511) are injected with a current 2.5 μA/cm
2
.  This simulated current injection 

triggers at the single cell level a periodic firing activity with a frequency at 13.4 Hz 

(Figure 3-1, Panel D).  Heterogeneity is introduced to the network with different initial 

values for the membrane voltage, the gating variable for the potassium currents, as well 

as a background noise modeled as a small injected current (normal distribution, mean = 0 

μA/cm
2
, σ = 0.66 μA/cm

2
) into each of the model neuron.  Other parameters subject to 

manipulations in this study are k (6~20, initial neighborhood size), p (0~1, reconnection 

probability), and d (0~3 msec, synaptic delay). Starting from a neuron ring, four different 

sets of network structures were calculated for each reconnection probability p.  All 

simulations were run for 6000 msec, where data from the first 3000 msec are discarded as 

transient. 

3.3 Results 

Network-wide bursting in the small-world regime 

In this purely excitatory network, the firing pattern changes dramatically as the 

network topology transits from local, to small-world (small L, large C), and eventually to 

the random regime (Figure 3-3, Panel a).  This transition in network topology 

corresponds to an increase of reconnection probability p from 0 to 1.   In the local regime 

(Figure 3-3, Panel b1), the excitation originates from the pacing neurons and propagates 

to other neurons along the two halves of the ring.  The waves of activities eventually end 

at the other end of the ring when they collide.  This wave of activities has a propagation 

frequency of 13.4 Hz, which is identical to the firing rate of the pacing neurons (Figure 3-

1, Panel D & Figure 3-3, Panel b1).  In the small-world regime (Figure 3-3, Panel b2-b3), 
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a different dynamic emerges where successive waves from the pacemaker nodes 

propagate with a slightly increased velocity after the initial waves were triggered.  The 

faster activity propagation is a result from the presence of the long-range connections 

characteristics of the small-world network topology.   With these new wave sources, the 

network becomes increasingly more active until the entire episode of activity ultimately 

ceases.  The duration of the network bursting activity is several times longer than the 

period of the firing activity of each of the pacemaker nodes, and the mechanism 

underlying the cessation of each network burst episode is examined in detail in one of the 

following sub-sections. 

The burst period of the network level activities is calculated as the averaged sum 

of the duration of the episode of activity and the duration of the following episode of 

quiescence by examining the histogram of spike times.  The frequency of the rhythmic 

network activity is then calculated as both the inverse of the calculated period, as well as 

the dominant frequency component of a Fast Fourier Transform on the spike-time 

histogram (bin size = 20 msec). As p increases in the SW regime, the period of the 

bursting activity decreases (Figure 3-3, Panel b2-b3) while the dominant firing frequency 

of the neurons increases.  When p is further increased, resulting in the transition of the 

network topology into the random regime (Figure 3-3 Panel b4), all model neurons in the 

network fire in near synchrony at a frequency approximately 1-3% faster than 13.4 Hz 

(Figure 3-3, Panel a). The relationship between reconnection probability p and the 

dominant spiking frequency can be summarized as follows (Figure 3-3, Panel a) – when 

the network is operating in the small-world regime, the dominant firing frequency drops 

to a lower value; on the other hand, when the network topology falls either in the local 

(ordered) or the random paradigm, the dominant firing frequency closely corresponds to 

that of a single ML model neuron.  These phenomena are due to the fact that higher 

reconnection probability p implies a larger number of long range projections, which 

allows for faster recruitment of network neurons to fire synchronously. 
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Synaptic delay supports network-wide bursting activities 

In a separate set of simulations, synaptic delay was set to a value between 0~3 

msec with 0.75 msec increment for each of the reconnection probabilities p.  The 

simulation results are summarized in Figure 3-4 & Figure 3-5.  When there is no synaptic 

delay, no topology-dependent bursting activities exist for any value of p.  In this scenario, 

the propagating waves characteristic of a regular topology transition directly into 

synchronous firing activities in characteristics of the random network.  As the synaptic 

delay is increased above zero, bursting activity starts to emerge in the SW regime.  In the 

scenarios where non-zero synaptic delays are coupled with SW network topologies, the 

range of p that supports bursting activity becomes smaller as the delay increases.  When 

the synaptic delay reaches 2.25 msec, before network-level bursting activities start to 

emerge, the network exhibits hyperactive firing activities which resemble “seizing” 

activities, or bursting activities with unusually long burst period, in the small-world 

regime.  In conclusion, synaptic delays have a significant role in maintaining the 

robustness of the network as larger delays allow for a wider variety of network-level 

activities.  As will be further detailed in the next sub-section, network-level bursting 

activities in our 512-cell network depend on an intricate balance between the de-

synchronization of a silent network through recurrent excitations originating from pace-

making neurons receiving constant current injections and the progressive synchronization 

facilitated by long-range projections.  Therefore, only values of synaptic delay greater 

than zero support network-level bursting activities in the small-world regime.  When the 

synaptic delay equals to 0 (msec), network synchronization is enhanced and the network 

transits directly into a synchronized firing state in the small-world regime.  On the other 

hand, when the synaptic delay is set to at 2.25 (msec) or 3 (msec), network 

synchronization is hindered and bursting activities with unusually long period are 

observed.  Consequently, with larger synaptic delays, the hyperactive firing activities  
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Figure 3.3 Small-world (SW) connectivity leads to bursting in a network of ML 

models.  Simulations performed in NEURON using nominal parameter values for the ML model (Morris 
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and Lecar 1981) scaled to a whole-cell capacitance based on an arbitrary soma compartment surface area.  

The 10 pacemaker neurons receive stimulus current of 2.5 µA/cm2.  For all simulations, k = 10, d = 1.5 

msec, and the synaptic weight = 0.1 µS.  Panel a shows the relationship between the reconnection 

probability p and the following parameters:  normalized characteristic clustering co-efficient (C, indicated 

in green), normalized mean path length (L, indicated in red), and median dominant firing frequency 

(indicated in blue).  Panel b1 through b4 each shows typical network activities corresponding to a particular 

value of p.  These p values are 0, 0.025, 0.079, and 0.794 from top to bottom; plots are raster plots with 

each black dot indicating a firing event. 

 

 
 

Figure 3.4 Synaptic delay, network topology, and network level activities.  This figure 

demonstrates how network level activities depend on both the synaptic delay and network topology.  The 

green bar signifies the range of small-world network topology.  The light blue squares indicate bursting 

activities, and the yellow squares indicate a mixture of bursting and near-synchrony firing activity.  The 

color brown indicates where hyperactive activities were observed, and the color dark blue indicates 

network-level activities characterized by propagating waves.  Finally, the color orange indicates network-

level synchronous firing activities.  When synaptic delay is zero, no bursting activities exist regardless of 

the network topology.  As the synaptic delay increases beyond zero, bursting activities (light blue) start to 

emerge in the small-world regime.  For example, when the synaptic delay equals to 1.5 msec, network 

activities transition from propagating waves (dark blue) to bursting activities (light blue), then to a mixture 

of bursting & synchronized firing activities (yellow), and eventually to synchronized firing activities 

(orange).  When the value of synaptic delay is large (e.g. 3 msec), hyper-active activities (brown) emerge in 

the small-world regime before any bursting activities can be observed. 
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Figure 3.5 Examples showing the relationship between network-level activities in the 

SW regime and synaptic delay.  This figure demonstrates how network-level activities transition 

from “hyperactive” (e.g. “seizing”), to bursting, and to a mixture of bursting and near-synchrony firing 

activities in the SW regime.  The synaptic delay is set to 2.25 msec, and the color-coding corresponds to 

that used in Figure 3-4.  From top to bottom, the reconnection probabilities are 0.031, 0.063, 0.126, and 

0.251.  
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occur in the small-world regimes achieved with lower values of p (Figure 3-5), since 

higher values of p indicate more long-range projections that facilitate network 

synchronization.  In conclusion, the faster the network components synchronize their 

activities, the faster the burst terminates (e.g. shorter period), and this concept will be 

further examined in the next sub-section. 

An increase in synchrony causes burst termination in the absence of refractory 

period 

As introduced previously, a “burst” consists of an episode of spiking activities 

followed by a quiescent episode.  The last part of this work focuses on investigating how 

such quiescent episode come to be when at the single cell level, there is no slow 

mechanism directly contributing to the refractory period that causes the neuron to enter 

the refractory state. 

Two examples of typical bursting activities facilitated by SW network topology 

are shown in Panel a2-b2 in Figure 3-6.  Within each burst, the network synchronization 

level varies within a range and eventually increases to a local maximum.  This 

phenomenon is demonstrated in Panel a1-b1 in Figure 3-6, where the synchronization 

level is calculated as the size of a time window preceding a specific time point during 

which a population-wide activity event has occurred, e.g. 85% of the population fires at 

least once.  By this definition, a smaller time window implies a more synchronized 

network state, while a larger time window implies a less synchronized network state.  

This measure was relatively insensitive to the choice of population percentage threshold 

to claim population wide activity had occurred, for similar results were obtained with 

values from 70% to 95%.  

For further investigation of the relationship between network synchronization 

level and burst termination, a separate set of simulations was designed.  In these 

simulations, a stimulus whose amplitude is just sufficient to generate a single action 
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potential was administered at a randomly generated time to each neuron during a 

specified time window.  This random delivery of stimuli was drawn from a uniform  

 
 

Figure 3.6 Progressive synchronization during a burst, and associated probability of 

bursting given a certain set of initial synchrony condition.  Time-varying synchronization 

measures (shown in a1/b1) associated with the simulations shown in a2/b2, with p values of 0.0316 (a1, a2) 

and 0.0631 (a2, b2) respectively.  Synchronization at each given time is measured by the time window 

preceding the reference point during which 85% of the neuron population fires at least once.  Panel c 

illustrates the probability of self-sustained burst from equilibrium conditions given an initial level of 

synchronized network-wide firing (closed circles and open circles represent p = 0.0361 & 0.0631 

respectively).  The dashed lines at 28 and 44 msec are also shown in panel a1/a2 for reference. 
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distribution and applied to the network initially in a quiescent state.  When an initial 

quiescent condition is imposed, the probability of post-stimulus activity is maximized 

when the initial stimulus is applied within a specific time window.  This optimal time 

window ranging from 28 to 44 is indicated in Panel C in Figure 3-6. 

This optimal time window is specified as the two dashed lines in Panel a1-a2 of 

Figure 3-5, within which the majority of intra-burst spiking activities occur.  In addition 

to a general trend of increasing synchrony (decreasing synchronization measure) toward 

the end of each burst, the bursting activity terminates as the network activity becomes 

highly synchronous, e.g. when the synchronization measure eventually falls outside the 

time window of 28-42 msec.  Based on these observations, we can conclude that in the 

SW regime, burst initiation is due to the initial firing of pacemaking nodes and recurrent 

excitation within the network.  Burst termination, on the other hand, can be attributed to 

an increase in the level of synchrony in the network beyond which a self-sustained burst 

is unlikely. 

3.4 Summary  

In the project presented in this chapter, the influence of network topology over the 

output of the neural network is investigated.  The transitions in network level activities 

presented here are also observed in other topology-dependent activity variation studies 

where the component model neuron is of the canonical form, e.g. an integrate-and-fire or 

Hodgkin-Huxley model (Netoff et al. 2004).  The values for synaptic delay used in Netoff 

et al. 2004 were set at 2.8~3.7 msec; therefore, the small-world topology in their study 

supports hyperactive behavior (e.g. seizing) similar to what we observed here with longer 

synaptic delays.  Consequently, a distinct transition of network activity to rhythmic burst 

occurs at higher values of p, where the topology is considered to be between the small-

world and the random structure.  Factors other than the level of synaptic delay which 

might contribute to differences in observations can also include the fundamental 
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differences in the component neuron as well as the size of the simulated network.  In 

another set of simulations (results not shown), we have observed that with all else is held 

equal, the minimal reconnection probability p which results in a SW topology facilitating 

network-level bursting activity increases when the size of the ML network is increased. 

There are many neural systems where SW connectivity is likely to be present 

(Boersma et al.; Gong et al. 2009; Wright and Butera 2006; Yan et al. 2010), and it is 

speculated that the mechanisms elucidated in this project may foster slower neural 

rhythms with time-scales that currently cannot be accounted for by the time constants of 

voltage-gated, calcium-activated, or other synaptic-kinetic mechanisms.  The input-

output properties of the ML model are not esoteric; if one interprets the ML model as a 

generic measure of neural activity, the response of the ML model to input during the 

active phase is remarkably similar to the response of endogenously bursting neurons (e.g. 

ML as a model of the envelop of bursting activity).  Therefore, the results derived from 

this project have the implication in issues such as how endogenously bursting neurons, 

regardless of the mechanisms underlying their pacemaking properties, may contribute to 

maintaining network rhythms much slower than the bursting activities at the level of 

isolated neurons.  This observation is especially interesting and relevant to the ultimate 

goal of the work presented in this document, as the pre-Bötzinger complex in the 

transverse slice respiratory circuitry has been shown to contain multiple types of 

pacemaking neurons working collectively to generate rhythmic PBC region output 

(Thoby-Brisson and Ramirez 2001). 
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4. INTER-NEURON COUPLING DEPENDENT NETWORK-LEVEL 

PHENOMENA
2
 

 

4.1 Abstract 

Important physiological functions, which often manifest at the time scale of 

seconds or more, are initiated, controlled and monitored by neuron networks.  On the 

other hand, the function of a given neuron network is governed partially by inter-neuron 

interactions that occur at a drastically different time scale.  Adhering to the objective of 

investigating emergent excitatory network phenomena, the work presented in this chapter 

focuses on how changes in the type and strength of coupling among two or more neurons 

at the millisecond time scale can manifest at another time scale orders of magnitude apart 

(Figure 3.1).   

In addition to elucidating the mathematical yet physiologically significant 

relationship between processes occurring at drastically different time-scales and different 

structural levels, the research presented here also provides possible explanations for the 

effects of gap-junctional coupling in the output of respiratory transverse slice preparation 

(Bou-Flores and Berger 2001).  The work also serves as a basis for further explorations of 

the fine balance between multiple excitatory effectors (e.g. multiple neurotransmitters) 

concurrent in neuronal population in vivo (Doi et al. 2009; Zanella et al. 2009).   

                                                 
2
 The work presented in this chapter has been submitted to Journal of Computational Neuroscience as a 

paper and is currently in the 3
rd

 round of review process.  The author of this document is the first author of 

the aforementioned paper in review.  The portion of the work presented in this chapter investigating the 

effects of varying Ggap while fixing Gsyn in the paired-cell scenario was originally conducted by the third 

author of the paper.  The metric proposed in this work categorizing different burst solutions was 

contributed by the second author Natalia Toporikova.  The author of this document is independently 

responsible for all other work presented in this chapter except otherwise clarified. 
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Figure 4.1 Effects of synaptic and gap-junctional couplings at different time scales.  

The couplings effect spike synchrony at the millisecond time scale, and also have effects on the burst 

period at the second time scale.  The synaptic coupling has a time constant of 5 msec, and the gap-

junctional coupling modeled as a simple electrical resistor takes effect immediately. 

 

4.2 Methods 

The simulation studies are performed on networks of single neuron model 

published previously (Purvis et al. 2007).  The network contains either 2 or 50 such 

neuron models, and the model neurons are connected to each other with all-to-all 

excitatory synaptic coupling (Butera et al. 1999a; Purvis et al. 2007) and electrical 

coupling, which is modeled as a simple resistor.  Values of electrical and synaptic 

coupling are specified where needed; otherwise, nominal parameter values were adopted 

from previous work. 

All simulations were run for 160 seconds of simulation time.  To eliminate initial 

transient network activity, results from the first 60 seconds of all simulations were 

discarded.  The simulations were performed in NEURON.  In addition, a subset of the 

paired-cell network set-up was subject to quasi steady state non-linear bifurcation 
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analysis using XPP AUTO.  Resulting data from all simulations was analyzed using 

customized MATLAB scripts.  The purpose of these MATLAB analyses is to extract 

features which can serve as a platform for comparison between phenomena observed at 

different time scales.  The two features extracted from these network simulations are 

network burst period (Panel A, Figure 3-1) and intra-burst spike synchrony (Panel B, 

Figure 3-1). 

SDI – Quantifying phenomena occurring at the millisecond time scale 

When analyzing intra-burst spike synchrony, a Spike Deviation Index (SDI) was 

used to calculate the degree of spike-level alignment in firing times.  One neuron is first 

selected as the reference, and for each spike produced by the reference neuron, the time 

interval between the spike and the closest spike, either forward or backward in time, 

produced by another neuron within the same burst is identified.  Tclosest-spike for the 

reference neuron is then calculated as the averaged value of the aforementioned time 

intervals identified for every single spike produced by the reference neuron within a 

single burst.  Repeating the same calculation over the entire neuron population, the SDI is 

defined as the standard deviation of all the Tclosest-spike values identified for all neurons in 

the population (N = 50).   

The calculation of SDI can be summarized by the following equations.  If N1 is 

defined as the number of spikes within a single burst, and N2 is defined as the number of 

bursts recorded from the same neuron (neuron x) from the population, then: 

T Nth burst = { ∑all spikes [min( | spike-time(neuron x) – spike-time(neuron y, y ≠ x) |)] }/ N1 

 

T closest spike, neuron x = [ ∑all bursts of neuron x (T Nth burst of  neuron x) ] / N2 

 

SDI = σ (T closest spike of neuron 1, … , Tclosest spike of neuron x1, … Tclosest spike of  neuron 50) 

 

where σ is the standard deviation. 

This SDI metric was not intended to be a rigorous definition of spike-level 

synchrony, but rather to easily distinguish at a population level in-phase synchrony (SDI 
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is near 0) from splay-phase synchrony (SDI is on the order of many milliseconds), which 

is analogous to anti-phase synchrony in the two-neuron case. 

4.3 Results 

As stated in the Methods section, the two types of inter-neural couplings of 

interest here are the synaptic (chemical) coupling and the gap-junctional (electrical) 

coupling.  The link between manifested electrical profiles observed at different time 

scales is established by examining the relationship between network burst period (on the 

time scale seconds) and intra-burst spike synchrony (on the time scale of milliseconds).  

The structure of the discussion in the following subsections is summarized as follows.  

Using a 50-cell simulated neural network as the substrate, the effects of varying the two 

types of coupling strengths respectively on network-level electrical profiles are examined.  

The investigation then moves to examining simulation results from paired-cell networks.  

With qualitatively identical manipulation of the two coupling strengths, consistency in 

changes of electrical profiles in both the 50-cell and the paired-cell settings suggest 

similar underlying mechanisms.  These mechanisms are further examined in using 

bifurcation analysis.  In addition to emphasizing the physiological significance of the 

work presented, the project concludes with the introduction of a metric that connects 

changes in electrical profiles with changes in bifurcation landscape. 

50-cell network: Coupling strengths alter burst period and spike synchrony within 

the burst 

In a 50-neuron network, varying gap-junction and synaptic coupling strengths 

produces two effects that occur at two different time scales orders of magnitude apart.  

The faster millisecond time scale corresponds to that at which each individual neuron 

spikes, and the slower second time scale corresponds to that at which network-level 

bursting activity manifests (Figure 4-1).  At the level of network bursting activity, for a 
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given value of excitatory synaptic conductance (Gsyn), increasing the strength of gap-

junction coupling (Ggap) from zero causes the network burst period to increase (Figure. 4-

2B1 through 4-2B3).  However, beyond a critical Ggap value, termed Ggap-p-critical (Figure. 

4-2B3, 4-2B4), the network burst period quickly decreases and remains nearly 

unresponsive to further changes in coupling strengths.   

Increasing the value of Gsyn while fixing the value of Ggap, on the other hand, 

causes an abrupt increase followed by a gradual decrease in the SDI measure (Panel D, 

Figure 4-2).  In the parameter space examined, the decrease in the SDI measure never 

reaches to the value characterizing in-phase spiking activities (Panel F1-F3, Figure 4-2).  

This phenomenon is accompanied by an abrupt change in the network burst period (Panel 

A, Panel C1-C3, Figure 4-2).  The abrupt increase in network burst period occurs at the 

same level of Ggap where the switch in spike synchrony occurs (Panel A & D, Panel C2 & 

F2, Figure 4-2); however, the burst period continues to increase unlike the decreasing 

trend in the SDI measure following the abrupt change.  These observations are robust 

across a broad range of the parameter space (Panel A & D, Figure 4-2). 

To summarize, while fixing Gsyn, Ggap-p-critical corresponds to the value of Ggap at 

which the effect of increasing Ggap on the burst period reverses.  Similarly, Ggap-s-critical 

corresponds to the value of Ggap at which the effect of increasing Gsyn on the spike 

synchrony (SDI) within each burst reverses.  In addition, for the simulation settings 

specific to our study, they (Ggap-p-critical & Ggap-s-critical) both have the value of 1.75nS when 

Gsyn is fixed at 2 nS.  As will be further described in section 3.2, Ggap-p-critical and Ggap-s-

critical turns out to be identical for any fixed level of Gsyn.   
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Figure 4.2 50-cell: effects of Ggap and Gsyn on burst period and spike synchrony.  

The burst period is color-coded in Panel A, and the Spike Deviation Index (SDI) characterizing spike 

synchrony is color-coded in panel D.  The calculation of SDI is described in the Methods section.  Panels 

B/E are raster plots of several periods of bursting (B) and a single burst (E) within the network for 4 sets of 

coupling parameters indicated by the solid black boxes in panels A/D; the parameter sets are: Ggap = 0, 0.5, 

1.75, and 2.25 nS, with Gsyn fixed at 2 nS.  Panel C/F contain the same information for another 3 sets of 

coupling parameters indicated by the dashed black boxes in panels A/D; these parameters are: Gsyn = 1.5 

nS, with Ggap = 0, 1.25, and 3 nS. 
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Unlike the cases where Gsyn is kept fixed with varying values of Ggap, we do not 

observe the type of complex thresholding phenomena when varying values of Gsyn are 

coupled with a fixed value of Ggap.  For each fixed value of Ggap, the burst period abruptly 

increases as Gsyn is increased beyond a critical value (Gsyn-critial, Panel C2 in Figure 4-2).  

Furthermore, unlike the case where varying Ggap is coupled with a fixed Gsyn (Panel B3, 

Figure 4-2) where both increased burst duration and recovery time together contribute the 

observed increase in burst period, the increase in burst period here is predominantly due 

to a lengthening in the recovery time of the burst.  At the same critical value of Gsyn, the 

model neurons transition into asynchronous spiking, e.g. anti-phase activities (Panel F2-

F3, Figure 4-2) and never return to the synchronous, e.g. in-phase spiking states (Panel 

F1, Figure 4-2).  As will be examined in later sections, the difference stems from the 

interactions of different solution-branches in a changing bifurcation landscape. 

Paired-cell network: Effects similar to those observed in 50-cell network on burst 

period and spike synchrony suggest similar underlying mechanism. 

In Figure 4-3, the six panels illustrate typical paired-cell simulation results 

observed from varying the strengths of couplings between two model neurons.  Each of 

these six panels has three portions.  The top portions are dedicated to illustrating the time 

series membrane voltage data from paired-cell simulations.  The progression of intra-

burst spiking synchrony is highlighted in the middle portions of these panels.  Lastly, the 

bottom portions correspond to results derived from non-linear bifurcation analysis.  Panel 

A through Panel C represent results from simulations with a fixed Gsyn and varying Ggap 

values; whereas Panel D through Panel F represent results from simulations with a fixed 

Ggap and varying Gsyn values.  Overall, systematically varying Ggap and Gsyn in the paired-

cell scenarios yield results that are qualitatively similar to that from 50-cell network 

simulations. 
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With a fixed Gsyn, the paired model neurons cannot maintain in-phase 

synchronous spiking activities when the burst period increases with Ggap (Panel A & B, 

Figure 4-3).  On the other hand, when the burst period decreases with further increases in 

Ggap (Panel C, Figure 4-3), the two neurons are firing identically with synchrony. As 

shown in middle portions of Panel A-C, the burst initially starts with the two neurons 

firing synchronously; however, this state is not stable and is lost within the first few 

action potentials of the burst.  In general, in the simulated paired-neurons, a larger value 

of Ggap (Panel B Figure 4-3) does allow the model neurons to maintain transient in-phase 

synchronous spiking activities for a longer fraction of the burst duration than smaller 

values of Ggap (Panel C, Figure 4-3).   

Briefly summarizing, in the paired-neuron scenario, the spike synchrony within a 

burst transitions from in-phase synchronous to anti-phase asynchronous spiking activities 

when the Ggap < Ggap-p-critical.  From now on, this mode of bursting activities where intra-

burst spike synchrony transitions from synchronous to asynchronous is characterized as 

anti-phase spike bursting (ASB).  Whereas when Ggap >= Ggap-p-critical, the spiking 

activities from the paired model neurons remain synchronous throughout the burst, and 

this mode of bursting is characterized as in-phase spike bursting (ISB, synchronous 

spiking throughout a burst).  In addition, since Ggap-p-critical corresponds to a change in 

spike synchrony as the value of Ggap is varied, i.e. Ggap-p-critical = Ggap-s-critical, they will be 

referred to collectively as Ggap-critical.  For the purpose of clarification, the naming 

convention is detailed in Table 4-1. 

 

Table 4.1 Bursting Mode Characterization. 

Bursting Mode Characterization 

Anti-Phase Spike Bursting (ASB) In-Phase Spike Bursting (ISB) 

Synchronous in-phase (IP) spiking 

activities transition to asynchronous anti-

phase (AP) spiking activities within a burst 

Synchronous in-phase (IP) spiking 

activities are maintained throughout a 

single burst 
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Panel D through F of Figure 4-3, together with the highlighted Row A in Figure 

4-4, illustrate the results obtained when a fixed Ggap is coupled with varied values of Gsyn 

across an appropriate region of parameter space.  As derived similarly from its 

counterpart in 50-cell simulations, increasing Gsyn while fixing Ggap results in a loss of in-

phase synchronous spiking activities earlier within a burst (middle portions of Panel D 

through F, Figure 4-3) along with an increase in burst period (top & middle portions of 

Panel D through F, Figure 4-3).  The complex thresholding phenomena observed while 

varying Ggap with a fixed Gsyn are not observed here. 

The effects described so far are spike mediated.  In a two-neuron network without 

spiking currents (i.e. just a sub-threshold oscillation), manipulation of Ggap or Gsyn has a 

negligible effect on period (results not shown).  The key conclusion from both the 

network level and the paired-neuron simulations is that manipulation of spike-level 

synchrony ultimately alters the burst dynamics.  Furthermore, this conclusion, along with 

the characteristics of ASB and ISB activities, persist as the time constant of the chemical 

synapse is decreased to one-tenth of the original value (results not shown). The paired-

cell simulation set-up enables a more in-depth treatment using numerical bifurcation 

analysis.  The next two subsections focus more on the application of quasi-steady state 

bifurcation analysis on results from simulation scenarios where varying values of Ggap are 

coupled with a fixed value of Gsyn.  Results from such treatment on cases where Gsyn is 

varied while keeping Ggap fixed will be discussed in comparison when appropriate. 

Transition between ASB and ISB 

The quasi-steady state bifurcation analysis of the paired-cell model is used to 

understand the dynamical mechanisms accounting for the transition between ASB to ISB 

as Ggap and/or Gsyn is varied.  The variable h is treated as the slow time-scale bifurcation 

parameter is the fast-slow decomposition.  This variable h accounts for the slow 

inactivation of an excitatory (depolarizing) persistent sodium current (INAP) in our neuron 
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model.  It is responsible for frequency adaptation and the cessation of spiking activity 

once a burst has been initiated (Butera et al. 1999a).  Analyzing the paired-neuron model 

under quasi-steady state conditions is reasonable for analyzing the dynamics of bursting 

(Bertram et al. 1995; Izhikevich 2000; Rinzel 1985), since we are only studying the 

activities of the paired neurons at the time-scale of bursting.  This form of analysis and 

the qualitative features of the single neuron and two-neuron bifurcation diagram are 

comparable to previous studies of so-called square-wave bursters for both single cells as 

well pairs of coupled cells that have considered electrical coupling (De Vries et al. 1998; 

Sherman 1994). 

As a prelude to the detailed treatment in the following two subsections, the 

structure of the summarizing Figure 4-3 is provided again as follows:  

The bottom portions of Panels A through F in Figure 3.3 demonstrate the results 

from utilizing the quasi-steady state bifurcation analysis on the paired-cell simulations.  

In Panel A through C, the value of Gsyn is fixed; whereas in Panel D through F, the value 

of Ggap is fixed.  The value of Gsyn in Panel A through C is fixed at 3 nS, with the values 

of Ggap being 0, 0.5, and 1.5 nS respectively. For simulations in Panel D through Panel F, 

the value of Ggap is fixed at 0.7 nS, while Gsyn are 0.75, 1.5, and 3 nS respectively.   

From ASB to ISB: Effects of Varying Ggap while Fixing Gsyn 

As shown by De Vries et al. 1998 and Sherman 1994, we also observed two sub-

critical Hopf bifurcations in our paired-cell models.  Emanating from each of the Hopf 

bifurcations are two periodic solution branches referred to here as the anti-phase (AP, red) 

and the in-phase (IP, black) solution branch.  Each of these two solution branches 

corresponds to the anti-phase and in-phase spiking activities respectively.  When there is 

no electrical coupling (Panel A, Figure 4-3), the two periodic solution branches are nearly 

identical in location and both periodic branches emanate from Hopf bifurcations in the 

increasing h direction with unstable periodic orbits.  At their respective limit points 
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(saddle nodes of the periodic solutions), the AP period branch reverses its stability twice 

and IP period branches reverse its stability once, and both continue in the decreasing h 

direction until terminating at the equilibrium solution branch (Figure 4-4, bottom portion 

of Panel A).  In this case when Ggap is zero (Gsyn = 3nS), the AP branch is stable and the 

IP branch is unstable in the range of h where bursting occurs. When Ggap is greater than 

zero, the AP and IP solution branches become distinct and exist at different but 

overlapping intervals of h (Panel B, Figure 4-3).  Furthermore, a z-shaped curve 

bifurcates from the slow manifold resulting in a set of asymmetric steady-state (ASS) 

solutions upon which the periodic solutions terminate, in a manner similar to that 

presented in previous work (Sherman and Rinzel 1992). 
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Figure 4.3 Paired-cell: Effects of Gsyn & Ggap on burst period and spike synchrony. 

(IP: black.  AP: red.  Bursting trajectory: green.  Steady State Solution: brown.)  Example results from two-

neuron network simulations.  From top to bottom, Panels A-C illustrate the simulation results when Gsyn is 

fixed at 3.0 nS, and Ggap = 0, 0.5, and 1.5 nS.  Similarly, Panels D through F illustrate the results when 

Ggap is fixed at 0.7 nS, and Gsyn is varied from 0.75, 1.5, and 3 nS.  From top to bottom, insets in each 

panel sequentially highlight the change in burst period, the detailed spiking profile that occurs within each 
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burst, and the results from non-linear bifurcation analysis.  Specific to the quasi-steady state non-linear 

bifurcation analysis, the x-axis represents the slow bifurcation parameter h, and the y-axis represents 

membrane voltage.  The trends in burst period and intra-burst spike synchrony are similar to those observed 

in network simulations illustrated in Figure 4-2. 

 

As Ggap increases, the entire AP solution branch and associated Hopf bifurcation 

shifts to lower values of h, while having no effect on the stable equilibrium solution or 

the location of the IP branch.  For low to intermediate levels of Ggap (Figure 4-3 Panel A 

& B, bottom portions), a growing continuous region of the AP branch loses stability.  

Correspondingly, the IP periodic branch gains stability over a larger range of h.  For 

example, in the bottom portion of Figure 4-3 Panel B, there is a brief initial interaction of 

the burst trajectory with the IP solution, but the bursting trajectory converges to the AP 

spiking solution.  As Ggap is further increased to large values (Figure 4-3 Panel C, bottom 

portion) the bursting trajectory lies entirely on the IP periodic branch during the spiking 

phase.  At this point the AP periodic branch is at all points unstable, while the IP periodic 

solutions are stable.  

Taken together with the previous section, these results suggest that an increase in 

Ggap promotes a transition from anti-phase spiking activities to in-phase spiking activities.  

As Ggap is increased, periodic solutions corresponding to AP lose stability, while periodic 

solutions corresponding to IP gain stability.  

From ISB to ASB: Effects of Varying Gsyn while Fixing Ggap 

The bifurcation landscape remains quite similar in cases where varying Gsyn is 

coupled with a fixed value of Ggap.  As shown in Panels D through F in Figure 4-3, the 

AP branch remains stable in the range of h where bursting occurs regardless of the 

change in the value of Gsyn.  However, as Gsyn increases, the IP branch loses stability 

from the left (Figure 4-3 Panel D2 Panel F2, bottom portions), while AP branch remains 

stable with extended stability into the lower h region (highlighted row in Figure 4-4). 
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Figure 4.4 Detailed profiles of the bifurcation diagrams where synaptic and gap-

junctional coupling strengths (nS) are varied. The coupling strengths are as follows: Gsyn = 0, 

1, 2 nS and Ggap = 0.1, 0.5, 1, 1.5 nS.  In each panels, the x-axis is h (inactivation parameter for persistent 

sodium current), and the y-axis is the membrane voltage (mV).  The highlighted row and column is 

representative of the convergence behavior of the bursting trajectory, as well as the changes in the two 

periodic solution branches AP (red) and IP (black). 

 

For the viable range of h values, the bursting trajectory converges to the IP branch 

if it is available and stable.  For example, in the bifurcation diagram included at the 

bottom of Panel D Figure 4-3, there is an initial interaction of the burst trajectory with the 
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IP solution.  As the value of Gsyn increases, the interaction between the bursting trajectory 

and the IP branch loses its significance, and the bursting trajectory converges to the AP 

spiking solution. As Gsyn is further increased to large values (bottom portion of Panel F, 

Figure 4-3), the bursting trajectory further follows the extended stability of the AP 

periodic branch into the region with lower h.  These results suggest that an increase in 

Gsyn promotes a transition from in-phase spiking to anti-phase spiking.  As Gsyn is 

increased, the IP branch loses its stability, and the burst trajectory instead converges to 

the AP branch.  

Transition between ASB and ISB Modifies Burst Period. 

In this subsection, we present a potential dynamical mechanism to account for the 

initial increase and subsequent decrease in burst period that occurs during the transition 

between ASB and ISB as Ggap or Gsyn is varied. 

For any fixed value of Gsyn, the entire AP periodic solution branch transitions to 

lower values of h as Ggap increases (e.g. highlighted column of Figure 4-4).  Even though 

the increase in Ggap with a fixed Gsyn has no effects on the region of hysteresis between 

the IP periodic branch and the equilibrium branch, it does increase the region of 

hysteresis in h between the AP periodic branch and the equilibrium branch.  In 

comparison, the process of varying Gsyn while fixing Ggap has insignificant effects on the 

location and stability of the AP solution branch (e.g. highlighted row of Figure 4-4).   

Comparing the panels in each column of Figure 4-4, it can be easily seen that as 

long as the AP branch is stable and the IP branch is unstable, the increase in hysteresis 

with larger Ggap will correspond to an increase in burst duration.  This increase in burst-

duration consequently leads to a longer burst-period.  However, as Ggap increases, the AP 

branch loses stability over some ranges of h and the IP branch gains stability.  In addition, 

at a sufficiently large value of Ggap, the AP branch becomes entirely unstable and the IP 

branch becomes stable.  This loss in AP stability combined with its left-ward shift in 
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location decrease the effective range of hysteresis in stable periodic solutions and the 

equilibrium branch.  It eventually offsets the increase in burst period due to left-ward 

shifting of the AP branch and leads to an overall decrease in burst period.  This form of 

hysteresis is necessary for this class of square-wave bursting (Bertram et al. 1995; 

Izhikevich 2000; Rinzel 1985). 

When varying Gsyn is paired with a fixed Ggap, one does observe loss of stability in 

the IP solution branch.  Nevertheless, such loss of stability does not effectively change 

the overall hysteresis region (e.g. highlighted row of Figure 4-4) and does not contribute 

to the change in burst period.  In fact, the change in burst period when Ggap is kept fixed 

can be attributed to an extension of the stable AP branch to the left.  Therefore, the 

aforementioned relationship between the variation of coupling strength and the change in 

hysteresis between the AP branch and the equilibrium branch, which causes period 

modification, only exists for different Ggap values when Gsyn stays constant.  In 

biophysical terms, increasing Ggap increases the dynamic range of the persistent sodium 

conductance (regulated by h), where the bi-stable existence of anti-phase spiking together 

with the hyperpolarized silence enable bursting to occur.  This increased range of 

conductance over which spiking occurs leads to longer burst durations.  This increase in 

Ggap ultimately results in the anti-phase spiking losing stability, while stabilizing in-phase 

spiking.  It is important to keep in mind that only the stability of the solution branch is 

affected by the Ggap coupling strength; the range of persistent sodium conductance where 

in-phase spiking and hyperpolarized silence exist (necessary conditions for bursting), 

however, does not vary with the Ggap value.  

In summary, we have shown that the stability of the faster dynamics (in-phase or 

anti-phase) spiking has a profound effect on the slower-time scale dynamics of bursting.  

These results have been demonstrated in a fifty-neuron network as well as a two-neuron 

network, and are robust as either Gsyn or Ggap is varied.  Mechanisms were determined via 
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bifurcation analysis of a two-neuron network as Ggap is varied, and are consistent with 

dynamics observed in the fifty-neuron network. 

Proposed Metric Defining the Class of Burst Solution 

In this section, we propose a metric that categorizes and predicts the convergence 

of the bursting solution onto either one of the periodic branches as the coupling strengths 

vary.  Panel A of Figure 4-5 illustrates a zoomed-in version of Figure 4-4, showing 

portions of the bifurcation diagrams relevant to the development of this metric (Figure 4-

5, Panel B). 

A close examination of Panel A, Figure 4-5 shows that the start of the bursting 

trajectory always converges to the periodic solution branch that is stable at the “knee” of 

the z-shaped steady-state solution.  Furthermore, when both IP and AP branches are 

stable, the solution converges to the IP branch.  Since only the AP branch is stable at the 

knee for lower values of coupling strengths, in such cases the bursting trajectories always 

start at the AP branch.  On the other hand, the trajectory converges to the IP branch 

solution for higher coupling strengths. 

These observations are the basis for the formation of the proposed metric, as this 

metric is defined to be the distance from the end of the stable branch of the IP solution to 

the knee of the steady-state solution (hstable-hLK).  When the IP branch intersects with this 

knee, hstable-hLK equals zero, at which point one would predict a complete transition to the  
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Figure 4.5 Development of a metric categorizing the class of the burst solution. Panel 

A is a zoomed-in version of Figure 3.  For each sub-panel in panel A, the x-axis is h, and the y-axis is 

membrane voltage V (mV).  Panel B illustrates the metric proposed to categorize the convergence of 

bursting trajectory.  Panel C compares the change in burst period (as the coupling strengths are varied) 
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versus the switch in the sign of the metric (hstable – hLK).  Note that Ggap is incremented in 0.1 nS in 

panel C.  The dashed line in Panel A represents the transition of (hstable-hLK) between positive and 

negative value.  The value of (hstable – hLK) is negative for the three sub-panels in the bottom-right corner; 

and the opposite is true for the five sub-panels on the top-left corner.  Accordingly, the bursting trajectory 

(green) for the three sub-panels in the bottom-right converges to the AP branch (red); and that for the top-

left five sub-panels converges to the IP branch (black). 

 

IP bursting mode.  Interestingly, the drop in bursting period correlates with a drop of the 

value hstable-hLK to zero (Figure 4-5, Panel C), both of which occurs when Ggap equals to 

Ggap-p-critical.  Therefore, this metric can also be used to identify the critical value of Ggap 

(with fixed Gsyn) at which the reversal of the trend in the direction of change of burst 

period, thus spike synchrony, occurs.  Approaching from another standpoint, the metric is 

also valid when characterizing the change in burst period and a critical value of synaptic 

coupling as varying Gsyn is coupled with a fixed Ggap. 

Effects of Gap Junctional Coupling on Spiking and Spectral Properties 

Previously published research has studied how gap-junctional coupling modulates 

inspiratory motoneuron and phrenic nerve activities in the transverse slice as well as the 

en-bloc preparations (Bou-Flores and Berger 2001).  Specifically, a reduction in gap 

junction strength causes an increase in burst period along with the emergence of a 

dominant intra-burst spiking frequency as observed in both the hypoglossal nerve rootlet 

recordings from the transverse slice.  Similar effects on bursting period and intra-spike 

frequency distribution were observed in phrenic nerve recordings.  These observations 

correspond to the results from our study presented in this paper where Gsyn is fixed and 

Ggap is decreased from a very high level (3 nS) down to the critical value Ggap-critical. 

Extending and applying identical measures used in analyzing experimental data 

on our simulation results, we were able to derive conclusions that are consistent with 

these phenomena observed in experiment settings.  As can be seen in Figure 4-6 – along 

with an increase in burst period – a dominant frequency for intra-burst spiking begins to 



www.manaraa.com

 57 

emerge when Ggap is decreased from 2.25 nS while fixing Gsyn.  Further decrease in Ggap 

below 1.75 nS still allows a dominant intra-burst spiking frequency to exist, accompanied 

by a decrease in burst period. 

 
 

 

Figure 4.6 Gap-junctional coupling & spectral properties.  Panel A is identical to Panel A 

of Figure 4-2, illustrating how burst period changes with respect to changes in coupling strengths.  Panel B 

demonstrates the appearance of a dominant intra-burst spiking frequency as gap-junctional coupling 

strength is varied.  The x-axis runs from 0 to 60 Hz, showing the range of intra-burst spiking frequency in 

our simulation data.  The y-axis shows the percentage of occurrences of a specific spiking frequency within 

a single burst.  The coupling strengths used to generate Panel B are identical to those identified by the solid 

black boxes in Panel A. 

 

4.4 Summary 

There is little doubt about the importance of the roles played by factors such as 

electrical or chemical synapses in the functional output of neuronal populations.  The 

slightest differences in the timing, amplitude, or synchrony of the functional neuronal 

output can be magnified through the circuitry in our nervous system and manifest 

downstream as physical abnormalities or diseases.  Some examples which have already 

been areas for extensive research are sleep apnea, Sudden Infant Death Syndrome (SIDS), 

and the Rett syndrome.  These disturbances or abnormalities have been linked at the 

cellular level to several neuromodulatory substances such as norepinephrine and 

serotonin, which exerts mainly excitatory effects at the millisecond time-scale when 
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working alone, but produce unexpected emergent network properties at a different time-

scale. 

Even though previous results presented in Sherman et al. 1991, 1992, and 1994 

have presented several aspects of our results in other context, our work here is the first to 

demonstrate at multiple structural levels how the manipulation of spike synchrony 

through either electrical or chemical coupling can lead to complex thresholding changes 

in burst period.  Such phenomena cannot be simply explained by a single well-defined 

biophysical mechanism, but only by considering the interactions between the spiking and 

bursting processes and the emergent dynamics of the coupled processes.  The underlying 

mechanisms have also been investigated via quasi steady-state bifurcation analysis at the 

paired-cell level, and can be generalized to explain the complex phenomena observed at 

the 50-cell network level. 

Exploring further in the area of respiratory rhythmogenesis and maintenance, 

previously published research has studied how inhibitory synaptic transmission and gap-

junctional coupling modulate inspiratory motoneuron activities (Bou-Flores and Berger 

2001). The “kernel” for these modulatory effects has been proposed to be the pre-

Bötzinger Complex (pBC) region, and our results are consistent with these ideas.  

Moreover, our research is also in line with recent experimental results, where the 

characteristics of neuronal network activities change in a complex way as the amount of 

excitation present in the system varies (Doi et al. 2009; Zanella et al. 2009). 
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5. TWO TYPES OF PACEMAKING PBC NEURONS: 

DIFFERENCES & SIMILARITIES MANIFESTING AT THE 

SINGLE-CELL LEVEL AND THE LEVEL OF SIMULATED PBC 

REGION
3
 

 

5.1 Abstract 

The respiratory rhythm originates in the brainstem (Bianchi et al. 1995; Feldman 

and Smith 1989) in a critical region of the ventrolateral medulla called the PBC (Smith et 

al. 1991). Evidence from in vitro (Funk et al. 1993; Koshiya and Smith 1999; Ramirez 

and Richter 1996; Smith et al. 1991; Smith et al. 1990) and in vivo studies (Koshiya and 

Guyenet 1996; Ramirez et al. 1998; Schwarzacher et al. 1995; Solomon et al. 1999) 

suggests that this region contains a locus of rhythm generating inspiratory neurons that 

continue to fire when isolated in vitro, and cause a cessation of normal breathing when 

lesioned in vivo.  The traditional view of this respiratory rhythm generation occurring 

primarily via complex network of inhibitory and excitatory connections (Bianchi et al. 

1995; Richter et al. 1992) had become controversial when rhythmogenesis persisted in 

en-bloc preparation when synaptic inhibition was blocked (Brockhaus and Ballanyi 1998; 

Feldman and Smith 1989; Onimaru et al. 1990).  Recent results (Del Negro et al. 2002a; 

Thoby-Brisson and Ramirez 2001; Tryba et al. 2003) have also shown that in addition to 

the NAP-dependent pacemakers – or Cd
+
-insensitive pacemakers (Del Negro et al. 2002a; 

Thoby-Brisson and Ramirez 2001) – a second type of pacemaker exists in the pBC of 

mice (Pena et al. 2004; Thoby-Brisson and Ramirez 2001).  This second type of 

                                                 
3
 The concept of the new PBC neuron model has been previously detailed in Specific Aim # 2 in NIH grant 

R01-HL088886 by the author of this document. 
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pacemaker is referred to as cadmium-sensitive or CAN-current dependent pacemaker 

(Pena et al. 2004; Thoby-Brisson and Ramirez 2001).   

The work presented here consists of the construction of a new generation PBC 

model neuron, which incorporates a second-messenger pathway linked to the intracellular 

[Ca
2+

] buffering mechanism.  As will be presented in the result section, this PBC model 

neuron is able to simulate both the NAP-dependent and the CAN-current dependent 

pacemakers.  Based on this model, a series of network simulations were conducted to 

examine the emergent network rhythms as a result of including a varying percentage of 

different types of pacemakers in the network.  A future study focusing on the 

investigation of how PBC activities might be modulated by neuromodulatory substances 

released by Raphé neurons is presented in Chapter 7. 

5.2 Methods 

Overview 

All simulations presented in the study were performed in MatLab with SimEngine 

developed by Simatra Technologies (http://www.simatratechnologies.com).  The single-

cell level simulations were performed for 60 seconds simulation time, with results from 

the first 30 second discarded as transient.  The network-level simulations were performed 

for 90 seconds simulation time with the first 30 second discarded as transient.   

For our purpose, we first constructed a single-compartment PBC neuron model 

that serves as a basis for all component neurons within the simulated PBC region. The 

model’s parameter space, made up by the conductance of the persistent sodium current 

(gnap) and the calcium-dependent cationic current (gcan), can be categorized into two 

“pacemaking modes” where the model neuron is said to be operating as a NAP-burster or 

a CAN-burster.  In other words, the model possess the capability to simulate (Figure 5-1) 

a spectrum of pacemaking activities characteristic to the Inap-dependent (NAP-burster, 

http://www.simatratechnologies.com/
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Cd
+
-insensitive) as well as Ican-dependent (CAN-burster, Cd

+
-sensitive) pacemaking 

neurons.  The distinction between the two pacemaking modes is made based on the 

differences in simulated membrane electrical activities as a result of depolarizing current 

injection.  Examples of these “pacemaking modes” as well as the typical parameter 

values used to simulate each can be found in Figure 5-2, and the exact criteria used to 

make the distinctions are detailed in the result section (Figure 5-3). 

 
 

Figure 5.1 Schematics of the single PBC neuron model. The new PBC neuron model 

includes a new calcium-activated cationic current (Ican), an inward calcium current (It), a G-protein 

coupled pathway which affects calcium buffering mechanisms mediated by ER as well as a membrane 

calcium pump.  The black arrows associated with the ion channels are indicative of the ion-current flow 

direction.  The red arrows indicate the positive effects of the following three factors on intracellular [Ca2+]: 

1.) ER calcium-release, 2.) inward calcium current, and 3.) activation of Gq-coupled receptor.  The green 

arrows indicate the negative effects on intracellular [Ca2+] of: 1.) ER calcium-uptake, and 2.) voltage- & 

[Ca2+]- dependent membrane calcium pump. 

 

Single PBC model 
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The schematic of the single-compartment PBC neuron central of this study is 

illustrated in Figure 5-1.  It consists of eight non-linear differential equations.  It contains 

a buffered oscillatory IP3 - endoplasmic reticulum (ER) - Ca
2+

 pathway that is also 

dependent upon synaptic activation.  The model is described by the following equations – 

dV/dt  = - (Itotal - Iext)  / Cm (Cm: membrane conductance) 

Where Itotal = Inap + Ina + Ik + Ica + Ican + It + Ileak + Isyn + Itonic + JEXTout/K 

The equations governing Inap, Ina, Ik, Isyn (synaptic excitation), and Itonic (tonic 

excitation) are adopted from previous work (Purvis et al. 2007).  Current injection into 

the model neuron is simulated by the term Iext.  JEXTout/K represents the current change 

due to the outward calcium flux through the calcium pump.  The calcium-dependent 

cationic current Ican (CAN-current) can be described by the following equation – 

Ican = gcan ● F([Ca
2+

]) ● (V-Ecations) , while F([Ca
2+

]) = 1 / (1+(Kcan/[Ca
2+

])  

The oscillatory IP3-ER-Ca
2+

 pathway that includes cytoplasmic buffering effects 

is formulated as three non-linear differential equations (Keizer and De Young 1992; 

Wagner and Keizer 1994)– 

d[Ca
2+

]/dt = β([Ca
2+

]) ● (JERin – JERout – JEXTout) 

d[IP3]/dt = Gq(t, V) + P([Ca
2+

]) – D([IP3]) 

dw/dt = (winf - w) / τw([Ca
2+

]), where β([Ca
2+

]) represents cytoplasmic calcium 

buffering effects, P([Ca
2+

]) accounts for effects of intracellular calcium concentration on 

IP3 production , and D([IP3]) is the degradation term for IP3 concentration.  The Gq(t, V) 

term simulates the time and voltage-dependent effects from G-protein coupled receptor, 

and this term is omitted in the work presented here.  The variable w describes the 

activation of the IP3 receptor that is dependent upon both calcium and IP3 binding to the 

appropriate sites.  JERin and JERout stand respectively for the calcium flux flowing into 

the cytoplasmic space and the calcium uptake by ER. On the other hand, JEXTout stands 

for the outward calcium flux through a pump located on the membrane, whose 
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dependency on membrane voltage and intracellular calcium concentration is modeled as 

follows (Cha et al. 2009) – 

vactivation = 1 / (1+exp(-(V+40)/5)); 

[Ca
2+

]-dependent activation = 0.26● ([Ca
2+

]
2
) / (0.1+[Ca

2+
]
2
) 

JEXTout = vactivation ● Ca
2+

-dependent activation 

Detailed expressions for the formulations listed above as well as the parameter 

values relevant to the newly included inward transient calcium current (It) current as well 

as the IP3-ER-Ca
2+

 mechanisms can be found in Appendix A.  The parameter values used 

are all of the correct order of magnitude as observed in previous experiments across 

various cell types. 

Single cell level analysis: parameter space identification – Pacemaking bursters vs. 

non-pacemakers, NAP-bursters vs. CAN-bursters 

All parameter values assigned to the parameters in the PBC model presented here 

– such as the parameters governing the IP3-calcium pathway or the calcium buffering 

mechanism, the persistent sodium current conductance, as well as the CAN-current 

conductance – could potentially significantly alter the electrical profiles of the model.  

However, in an attempt to focus our efforts to address issues relevant to different 

pacemaking modes directly stemming from the (co-)existence of persistent sodium 

current, the CAN current, and the serotonergic modulatory effects – the parameter space 

examined in this work is limited to be two-dimensional.  Namely, the parameter space 

consists of two conductance variables – the NAP-current conductance (gnap) and the 

CAN-current conductance (gcan) – where both are varied between 0 to 3nS with 0.1nS 

increment.   

Using a divide-and-conquer methodology, we first divide the (gcan, gnap) parameter 

space into the sub-space consisting of non-pacemakers, as well as the subspace where 

intrinsic bursting activities were observed.  The division is made possible by injecting a 
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model neuron with a specific (gcan, gnap) pair at a hyperpolarized state with incremental 

depolarizing current injection.  If the model’s membrane electrical activities go through 

the transition from silence to bursting, and eventually to spiking activities, then the model 

is categorized as a pacemaker.  Otherwise, the model whose activities transition directly 

from silence to spiking is categorized as a non-pacemaker.   

The constrained parameter space for pacemakers was then further divided into 2 

regions representing the 2 pacemaking modes – the NAP-bursters, and the CAN-bursters 

– based on the modulation of the model neuron’s bursting activities to depolarizing 

current injections.  The criteria used as well as the calculations performed to define each 

“pacemaking mode” are detailed in Section 5-3.  The prototypical simulated electrical 

profile of each operating mode is shown in Figure 5-3 & Figure 5-4. 

PBC nucleus model 

51 PBC model neurons were coupled with all-to-all as well as sparse (10% 

connectivity) synaptic projections to create a 51-cell network.  In the sparse connectivity 

scheme, each model neuron within the network projects synaptically on average to 5 

other randomly selected neurons in the network.  These simulations were designed to 

investigate how different percentage combinations of non-pacemakers with a specific 

type of pacemakers might affect network-level rhythmogenesis.  The number of 

pacemakers in each network is varied from 0 (e.g. no pacemakers in the network) to 51 

(e.g. all network components are pacemakers) with roughly 5-cell increments (Figure 5-7 

& Figure 5-8).  Some example network compositions are 95% non-pacemakers & 5% 

NAP-bursters, or 80% non-pacemakers & 20% NAP-bursters, or 70% non-pacemakers & 

30% CAN-bursters.  The component model neurons in each simulated PBC nucleus are 

uniformly selected from the population of NAP-busters, CAN-bursters, and non-

pacemakers as described in the previous sub-section. 



www.manaraa.com

 65 

 For each composition scenario, 15 trials were performed where the model 

neurons were connected with all-to-all synaptic projections.  For each composition 

scenario, additional 15 trial simulations were performed where the model neurons are 

inter-connected with sparse connections (10% connectivity), and are assigned parameter 

values identical to those used in the 15 trial simulations with all-to-all connections.  In all 

cases, the strength of each synaptic projection (gsyn) received by a single model neuron 

was scaled so that the total excitation from synaptic inputs equals to 7.5nS.  On the other 

hand, the total tonic excitation received by a single model neuron was selected to be 

0.2nS. 

Simulating the PBC nucleus – Activity analysis 

Within the simulated PBC nucleus, rhythmic bursting activities can occur at the 

single cell level, at the level of a cluster consisting of a small subset of network 

component neurons, and finally at the network level involving a majority (80%) of model 

neurons.  In view of our objective to examine activities beyond the single-cell level, an 

automated algorithm was implemented for burst-detection occurring at the cluster level 

and above.  This algorithm takes a histogram of spike times from every cell in the 

network as input, and determines whether the network activities exhibited can be 

considered as a network-level burst or not.  The maximum and minimum amplitude of 

the histogram was calculated, and the difference between those values was compared 

against a threshold (Athres).  If the threshold was met at least twice throughout the non-

transient simulation time (e.g. at least two bursts in 60 seconds), and if the amplitude of 

the histogram remained <10% of the maximum amplitude for some pre-defined minimum 

amount of time (Intervalmin), then the output was defined as a burst.  The value for Athres 

was chosen to be 5, and the value for and Intervalmin was chosen to be 150 msec 

respectively.  Depending on the degree of population recruitment, the defined burst can 

be either a cluster-level or a network-level phenomenon.  The degree of population 
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recruitment is defined as the median of the percentage of neuron population that fires at 

least once within a single episode of (cluster- or network-) rhythmic bursting activity 

summarized across all bursts from all 15 trials per simulation set-up (e.g. certain 

pacemaker % composition combined with a specific type of pacemaker, with a certain 

connectivity scenario).  In addition to the degree of population recruitment, another 

feature of interest is the period of bursting activity defined as the time interval which 

elapses between two episodes of activities.   

5.3 Results 

Investigating the parameter space: Pacemaker identification 

Starting from a state of zero electrical activities, pacemaker neurons are those 

neurons that respond to depolarizing current injection with the emergence of bursting 

activities.  Furthermore, once these pacemaker neurons are already exhibiting bursting 

activities, they continue to respond to additional depolarizing current injections with 

bursting activities until spiking activities emerge and persist with further depolarization.  

Non-pacemakers, on the other hand, are defined as neurons that respond to depolarizing 

current by a direct transition from non-activity to spiking.   

Setting gleak at 3.3 nS and Eleak at -70mV, for each pair of (gnap, gcan), a 

depolarizing current is injected into each model neuron.  With gnap and gcan being 

systematically varied from 0 to 3nS with 0.1nS increment, a total of 34596 (31 ● 31 ● 36) 

single-cell simulations were performed where the magnitude of the depolarizing current 

was increased from 0 to 70pA with 2pA increment for each pair of (gnap, gcan).  Based on 

the response of a model neuron to depolarizing current injections, the parameter space is 

divided into two parts; namely, the pacemaking region and the non-pacemaking region 

(Figure 5-2).  
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Panel G in Figure 5-2 illustrates the results from this process of identifying 

pacemakers in the (gnap, gcan) parameter space.  The red squares indicate a (gnap, gcan) pair 

that facilitates the emergence of bursting activities in response to certain magnitudes of 

depolarizing current injection, where the “threshold” current magnitude where the 

transition from silence to bursting occurs differs for each (gnap, gcan) pair.  The blue 

squares, in comparison, represent the (gnap, gcan) pairs where the electrical profiles of the 

non-pacemaker model neurons transition directly into spiking as the magnitude of 

depolarizing current is increased. 

Panel A through C illustrate the electrical profiles of model neurons with values 

of (gnap, gcan) corresponding the emphasized parameter-pair in Panel D, Figure 5-2.  The 

bursting activities shown are those that first emerge with depolarizing current injection.  

The (gnap, gcan) values specific to each panel are detailed in the figure caption.  As can be 

already seen from this figure, characteristically different bursting activities exist within 

the parameter space.  In the following sub-section, the differences in bursting 

characteristics – such as burst shape and burst duration – as well as the model neuron’s 

response to depolarization are closely related to the different mechanisms underlying the 

rhythmic bursting activities. 

Mechanisms underlying bursting activities in different regions of the pacemaking 

parameter space 

As alluded to earlier, previous experiment results have demonstrated the existence 

of two different types of pacemakers within the PBC region.  The type of pacemakers that 

responds to depolarization with prominent period modulation was identified to be Cd
+
-

insensitive, as its bursting activities persist with the blockade of calcium-dependent 

cationic current (Ican) with Cd
+
.  These pacemakers have also been shown to be sensitive 

to the blockade of persistent-sodium current (Inap) with Riluzole and are alternatively 

referred to as Inap-dependent pacemakers, e.g. NAP-burster.  On the other hand, those 



www.manaraa.com

 68 

pacemakers whose bursting activities are sensitive to Cd
+
 application have been shown to 

be resistant toward Riluzole.  These Cd
+
-sensitive pacemakers are referred to as CAN-

bursters in this work.  Unlike NAP-bursters, the electrical profiles of CAN-bursters show 

very little period modification when injected with depolarizing current.  In fact, CAN-

bursters exhibit more prominent burst-duration modulation when depolarized.   

In addition to the classifications based on responses to depolarizing current, Cd
+
, 

or Riluzole, these two types of pacemakers have been shown to respond to serotonin 

application differently.  The increase in burst-duration observed in CAN-bursters is more 

prominent than period modulation in response to serotonin application.  Contrary to the 

case with CAN-bursters, decreased burst-duration and period are observed in NAP-

bursters with serotonin application.  Further analysis of the PBC model which simulates 
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Figure 5.2 Investigating the parameter space: Pacemaker Identification. Panel A 

through C illustrate the bursting activity of model neuron from different corners of the parameter space as 

the pacemaking property first emerges with depolarizing current injection.  Panel D shows the result from 

pacemaking-identification within the parameter space where (gnap, gcan) = (0~3nS, 0~3nS).  The red 

portion represents the sub parameter space of pacemakers, and the blue portion represents that of non-

pacemakers. 
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both types of pacemakers as detailed below highlights the underlying mechanisms for the 

pacemakers’ distinctive responses to depolarizing current or serotonergic modulation. 

Along the two axes of our parameter space, the pacemaking properties of the 

model neurons depend entirely on Inap (when gcan = 0) or Ican (when gnap = 0).  With this 

sole dependency on either gnap or gcan for their pacemaking property, the model neurons 

along the axes proto-typically demonstrate the period (left portion of Panel A & B, Figure 

5-3) or burst-duration modulation (Panel C & D, Figure 5-4) characteristics of the two 

types of pacemakers (e.g. CAN-bursters and NAP-bursters) in response to depolarizing 

current injection.  Results from bifurcation analysis on two model neurons prototypical of 

the CAN-burster and the NAP burster are illustrated in Figure 5-3 and Figure 5-4 & 

Figure 5-5 respectively.   

Figure 5-3 demonstrate the analysis results for the NAP-burster (gnap=3, gcan=0nS).  

As illustrated in the left portion of Panel A & B, depolarizing current injection leads to 

faster bursting activity (reduced period) as well as a relatively less significant decrease in 

burst duration.  This phenomenon can be explained by examining the change in 

bifurcation landscape as shown in the right portion of Panel A & B, Figure 5-3.  The slow 

bifurcation parameter here is h, which governs the inactivation of Inap in the model neuron.  

With all else being equal, a depolarizing current injection shifts the lower branch of the 

steady state solution (black) to the left.  Consequently, the region of hysteresis between 

the steady state solution and the period solution (red) decreases, leading to significant 

reduction burst period and less significant decrease in burst duration. 
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Figure 5.3 The electrical profile and bifurcation landscape for a NAP-burster in 

response to depolarizing current injection. The top-left portion of panel A shows the electrical 

profile of a model neuron (membrane voltage V, mV) with (gnap, gcan) = (3, 0) nS, and the bottom-left 

portion shows the variation in the activation of Inap current (h, no unit).  The right portion of panel A shows 

the corresponding bifurcation landscape (red: periodic solution, brown: unstable steady state solution,  

black: stable steady state solution), with corresponding bursting trajectory imposed in green.  Panel B 

shows the same information from same model neuron, with the addition of a depolarizing current injection 

of 10pA.  The mechanism for prominent period modulation observed is illustrated in the right portion of 

Panel A & B. 

 

Non-linear bifurcation analysis was also performed for the prototypical CAN-

burster (gnap=0, gcan=3nS).  In Figure 5-4, the top trace of Panel A shows the membrane 

voltage of the pacemaking CAN-burster with no current injection.  The intracellular 

calcium concentration – which is directly linked to the inward calcium-dependent 

cationic current experimentally verified to be responsible for the pacemaking property of 
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a CAN-burster – is contributed by two sources in the modeling work presented here.  The 

first source is the fast inward calcium current, and the second one is the intracellular 

calcium release from the endoplasmic reticulum (ER) controlled by [IP3].  The 

relationship between the membrane potential and the variations in the two concentrations 

([Ca
2+

] & [IP3]) of a CAN-burster is shown as the green trace in Panel B, Figure 5-4.  The 

projection of this relationship (green) on to the x-y plane indicates a constant relationship 

between [Ca
2+

] and [IP3] (black) through the progression of the bursting activity. 

Since the conventional role of Inap is completely abolished in a prototypical CAN-

burster, the variation in [Ca
2+

] (direct contribution) and [IP3] (linked to [Ca
2+

], indirect 

contribution) can be considered as the slow mechanisms responsible for inducing 

bursting activities.  Furthermore, non-linear bifurcation analysis was conducted taking the 

main slow mechanism, [Ca
2+

] oscillation, as the bifurcation parameter.  Changes in the 

pacemaking properties of the CAN-burster as a result of serotonin application or 

depolarizing current injection can be explained by examining the bifurcation landscape of 

the prototypical CAN-burster. 

For different values of [IP3] within the baseline oscillatory range (middle trace of 

Panel A, Figure 5-4), the bifurcation landscape remains constant, and simulation results 

showed no modulations in burst duration or burst period (results not shown).  When [IP3] 

is elevated above its baseline level, simulating the effects of serotonin application, the 

bifurcation landscape still remains identical (Panel C1-C2 and D1-D2 of Figure 5-4, 

where [IP3] was fixed at 0.8 μM and 1.2 μM respectively).  However, a decrease in burst 

period and a significant increase in burst duration was observed since a drastically 

elevated [IP3] upsets the original calcium uptake-release ER mechanisms.  As a result, the 

amplitude of [Ca
2+

] oscillation increases, allowing longer burst duration and a slightly 

shorter burst period to manifest (Panel C2 & D2 of Figure 5-4).  Similar phenomena were 

observed in previous experiments investigating how the electrical activities of CAN-

bursters can be modulated by the application of norepinephrine (NE), which triggers 
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overlapping if not identical down-stream second-messenger pathways as 5HT (Doi and 

Ramirez 2008; Doi et al. 2009; Feldman et al. 2005; Neverova et al. 2007; Viemari and 

Ramirez 2006). 

Further dissection of the bifurcation landscape specific to a CAN-burster leads to 

the conclusion that burst initiation and termination are caused by a saddle-node on 

invariant circle (SNIC) bifurcation structure completely different from that in the case of 

NAP-burster.  Due to this specific SNIC bifurcation structure, the shift in the steady-state 

solution to the left (Panel B & D, Figure 5-5) as caused by depolarizing current allows 

bursting activity to be initiated (green) at a lower level of [Ca
2+

] (Panel D, Figure 5-5).  

This in turn leads to a prominent positive modulation in burst-duration that is 

characteristic of the CAN-burster receiving a depolarizing current injection (Panel A, 

Figure 5-5).  The relationship between the amplitude of depolarizing current and the 

minimum [Ca
2+

] for burst initiation is illustrated in Panel C, Figure 5-5. 

Previous experiment work has demonstrated in respiratory related neurons (e.g. 

PBC neuron, hypoglossal motoneuron) under serotonergic modulation a suppression of 

leak current and a positive influence on intracellular [Ca
2+

] speculated to be mediated by 

the IP3-pathway.   As illustrated in Figure 5-4 through Figure 5-6, the simulated NAP-

burster responds to depolarizing current with decreased burst duration and decreased 

burst period.  However, these effects are completely absent with any manipulations on 

the IP3-pathway as gcan is set to zero.  On the other hand, the burst period of the 

simulated CAN-burster can only be modulated by an elevated [IP3]; whereas its burst 

duration can be increased by both depolarizing current and an increased [IP3].  Since our 

model accurately simulates the variety of responses elicited from the two types of PBC 

pacemakers, the different mechanisms underlying pacemaking properties in the CAN- & 

the NAP-burster, as well as changes in their respective bifurcation landscape in response 

to depolarizing current injection and/or elevated [IP3] presented here provide an excellent 
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substrate for further investigation of the serotonergic effects in the transverse slice 

respiratory circuitry.  This important point is further expounded upon in Chapter 7. 
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Figure 5.4 The electrical profile and the typical bifurcation landscape for a CAN-

burster: simulated serotonergic modulation. From top to bottom, the three traces shown in 

panel A are the membrane potential (mV), the [IP3], and [Ca2+] traces (both in μM) of a prototypical 

CAN-burster with (gnap, gcan) = (3, 0).   Panel B contains a portion of these three trances (highlighted by a 

green box in Panel A) plotted in a different parameter space showing the variations in the two slow 

processes - [IP3] and [Ca2+] – in connection to a single burst of the CAN-burster.  Panel C1 shows the 

bifurcation landscape when [IP3] is fixed at 0.8 μM (green: bursting trajectory, red: periodic solution, 

brown: unstable steady state solution, black: stable steady state solution).  Panel D1 shows the bifurcation 

landscape when [IP3] is fixed at 1.2 μM.  Panel C2 & D2 zoom into the regions of interest in Panel C1 & 

D1. 

 

 
 

Figure 5.5 Changes in the bifurcation landscape for a CAN-burster: depolarizing 

current injection.  (For Panel B & D, bursting trajectory is imposed in green.  The color red indicates 
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period solution, and the color brown (unstable)/black (stable) indicates steady state solution) Panel A 

illustrates the significant burst duration modulation as a result of depolarizing current injection (bottom 

portion).  From top to bottom, the stimulus current is 0pA and 20pA respectively.  In comparison to Panel 

C1 & C2 of Figure 5-4, where stimulus current is 0pA, Panel B & D here illustrate the bifurcation 

landscape when the stimulus current is 20pA.  It is important that the lowest [Ca
2+

] supporting burst 

initiation roughly equals to 0.25μM in Panel C1 & C2 in Figure 5-4; however, this value is left-shifted to 

roughly 0.15μM in Panel B & D here.  Panel C shows results from two-parameter bifurcation analysis, 

showing how an increase in the amplitude of depolarizing stimulus current (x-axis) allows for burst 

initiation at a lower level of [Ca
2+

] (μM). 

 

Pacemaking mode identification: NAP-bursters vs. CAN-bursters 

Summarizing the results presented so far, in the parameter space of interest (e.g. 

(gcan, gnap) = (0~3 nS, 0~3 nS)), the different underlying mechanisms for pacemaking 

activities in a prototypical NAP-burster (gcan=0) as well as a prototypical CAN-burster 

(gnap=0) have been investigated using non-linear bifurcation analysis.  The period and 

burst duration modulation observed in experiments as well as our simulation studies can 

be explained by the difference in the bifurcation landscape, along with changes in the 

landscape induced by depolarizing current injection.  These results from analyzing the 

prototypical NAP-burster and CAN burster can be applied to understanding the entire 

parameter space in the sense that the combined effects of gnap & gcan determine the degree 

& type of modulation one observes when the model neuron is depolarized.  In this 

subsection, we further categorize the (gnap, gcan) parameter space into different 

pacemaking modes, where depolarizing current injection causes characteristically 

different modulations of the bursting activity of a single model neuron. 

Figure 5-6 illustrates the results from this process.  Starting from a hyperpolarized 

state, a model neuron was systematically injected with a depolarizing current ranging 

from 0 to 70 pA (with 2 pA increment).  The period as well as burst duration for each 

level of current injection is calculated.  As the model neuron becomes more depolarized, 

the period modulation is calculated as (perioddepolarized - periodhyperpolarized) / 
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periodhyperpolarized, and the burst duration (BD) modulation is calculated as (BDdepolarized – 

BDhyperpolarized) / BDhyperpolarized.  During this process of incremental depolarizing current 

injection, if the maximum observed period modulation between two increments in 

injected current is more negative than -30%, the pacemaker is then categorized as a NAP-

burster (Panel A, Figure 5-6).  This categorization of NAP-bursters corresponds to a 

median burst-duration modulation being more negative than -15% (Panel B, Figure 5-6).  

On the contrary, a pacemaker is categorized as a CAN-burster if its burst duration 

modulation is positive.  In some cases, the level of burst duration modulation reaching is 

greater than 30% (Panel B, Figure 5-6).  This categorization of CAN-bursters 

corresponds by a maximum period modulation of ~0% (Panel A, Figure 5-6). 

In summary, the parameter space that renders the PBC neuron with pacemaking 

properties characteristic of NAP-bursters is highlighted in orange in Panel C, Figure 5-5.  

On the other hand, the red region indicates the region where pacemaking properties 

characteristic of CAN-bursters are observed.  The parameter space for NAP-bursters does 

not overlap with the region for CAN-bursters.  Interestingly, when a subset of the 

identified NAP-bursters is projected onto the x-axis (gnap forced to 0), these neurons do 

not lose their pacemaking property but instead behave as CAN-bursters.  On the other 

hand, when the parameter space for CAN-bursters is projected onto the y-axis (gcan forced 

to 0), all CAN-bursters lose their pacemaking properties.  These observations are 

significant in the sense that they suggest the Inap-dependent and Ican-dependent 

pacemaking properties are not mutually exclusive, e.g. both currents contribute to a 

neuron’s bursting activities. 

Significance of pacemakers in a neural network: beyond single-cell level bursting 

activities & population recruitment 

Network-level simulations consisting of rhythmically active cells are not unique 

to the area of respiratory rhythmogenesis.  Examples of network level simulations can be 
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found in the area of cardiac physiology, where the significance of various attributes of the 

sinoatrial node (e.g. the SN node), the natural pacemaker of the heart, has been studied 

(Chang et al. 2009; Protas et al. 2010).  In addition, previous experiments as well as 

computational research focusing on investigating physiological functions controlled by 

neural network outputs have demonstrated numerous instances where network-level 

rhythmic activities can emerge in the absence of bursting activities at the isolated single-

cell level (Kosmidis et al. 2004; Rubin 2008).  Network-level rhythmic bursting 

phenomenon in the absence of pacemakers, along with the observed low population 

percentage of pacemakers ranging from 5% to 10% in naturally occurring neural 

networks, have long been used as two of the most common arguments against the 

significance of pacemakers in neural signaling.  However, our simulation results – as will 

be presented in this section (Panel A & B from Figure 5-7 & Figure 5-8) – propose that 

the presence of pacemakers, albeit at low percentage (5.8%), demonstrate higher 

capability at inducing cluster level rhythmic behavior with greater level of population 

recruitment within each burst. 
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Figure 5.6 Different pacemaking modes within the parameter space: NAP-burster & 

CAN-burster.  Within the parameter space of (gnap, gcan) = (0~3, 0~3nS), Panel A shows the degree of 

period modulation from depolarizing current injection.  Panel B shows the degree of median burst duration 

modulation in response to depolarizing current injection.  Panel C shows the overall results of pacemaking 

mode identification in the parameter space.  The lower-left corner (black) in Panel C represents non-

pacemakers.  The upper-right corner (brown) in the same panel represents pacemaking model neurons that 
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show minimal period modulation & negative burst duration modulation (not characteristic of CAN-bursters) 

in response to depolarizing current injection, therefore, this region is characterized neither as the CAN-

bursters nor as the NAP-bursters.  The parameter space characterized as NAP-bursters is indicated in 

orange, whereas the parameter space characterized as CAN-bursters is indicated in red. 

 

Two important conclusions can be derived by examining the top two panels in 

Figure 5-7 & Figure 5-8.  First of all, in comparison with simulation results based on 

model networks consisting only of non-pacemakers, a pacemaker percentage as low as 

5.8% is able to induce cluster level bursting behavior with certainty (probability = 1).  

Secondly, especially in networks containing NAP-bursters, the inclusion of pacemakers, 

even at a low percentage, recruit more neurons within the network to fire at least once 

within a single burst.  When the pacemaker percentage is raised to 9.8%, the probably of 

emerging bursting activities still equals to 1; furthermore, population recruitment reaches 

as high as 45% within each single burst.  Therefore, even though a network containing 

only non-pacemakers can at times induce bursts involving groups of neurons in the 

network, the presence of pacemakers within a neural network can further contribute 

positively to overall network-level rhythmogenesis. 

Emergence of network-level rhythmic activity: NAP-bursters networks vs. CAN-

bursters networks 

After identifying the (gnap, gcan) pairs which render the model neurons with 

electrical profiles characteristic of either the Cd
+
-insensitive (NAP-burster) or Cd

+
-

sensitive (CAN-burster) pacemakers, the network-level studies simulating the PBC 
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Figure 5.7 Simulating the PBC region, all-to-all connectivity: effects of different 

percentages of CAN- or NAP-bursters. In this set of simulations, the model neurons are 

interconnected with all-to-all synaptic projections.  The x-axis shows the varying percentages of 

pacemaking CAN- (indicated in red with hollowed diamond markers) or NAP-bursters (indicated in blue 

with asterisk markers) included in the simulated network.  Panel A shows the probability of either cluster-

level (population recruitment < 80%) or network-level (population recruitment >= 80%) bursting activities 

in the network.  Defining the population recruitment as the median number of neurons that fire at least once 

in all burst identified, Panel B shows the degree of population recruitment for each type & percentage of 

pacemakers included in the network.  Panel C1 & C2 shows the variation of burst period versus the 

percentage of CAN-pacemakers & NAP-pacemakers included in the network respectively. 
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Figure 5.8 Simulating the PBC region, sparse connectivity: effects of different 

percentages of CAN- or NAP-bursters.  In this set of simulations, the model neurons are 

interconnected with sparse (10%) synaptic projections, e.g. on average, each model neuron receives 

synaptic inputs from 5 neurons and project to 5 neurons in the network.  The x-axis shows the varying 

percentages of pacemaking CAN- (indicated in red with hollowed diamond markers) or NAP-bursters 

(indicated in blue with asterisk markers) included in the simulated network.  Panel A shows the probability 

of either cluster-level or network-level bursting activities in the network.  Panel B shows the degree of 

population recruitment for each type & percentage of pacemakers included in the network.  Panel C1 & C2 

shows the variation of burst period versus the percentage of CAN-pacemakers & NAP-pacemakers 

included in the network respectively. 

 

region were accomplished by constructing a series of 51-cell networks where varying 

percentages of pacemakers – either NAP-bursters or CAN-burster – are connected with 
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non-pacemakers with all-to-all or sparse synaptic connections.  The results from these 

simulations were summarized in Figure 5-7 and Figure 5-8.  

As introduced in the previous section, Panel A from both Figure 5-7 and Figure 5-

8 present the probability of network-level rhythmic burst activity versus the percentage of 

pacemakers included in the network.  Panel B from both figures illustrate the population 

recruitment level observed within a single burst.  Panels C1 & C2 in Figure 5-7 

summarize the range of burst period observed versus the percentage of pacemakers 

observed in networks with all-to-all synaptic connections consisting of either NAP-

bursters & non-pacemakers, or CAN-bursters & non-pacemakers.  Similar information 

from networks with sparse (10%) synaptic connections was shown in Panels C1 & C2 in 

Figure 5-8.   

Immediately, a conclusion can be drawn from Panel A & B from Figure 5-7.  The 

probability of bursting activities involving multiple neurons emergence reaches 1 as soon 

as the pacemaker percentage reaches 5.8%.  Furthermore, population recruitment level 

increases with higher pacemaker percentages.  The qualification of network-level 

bursting activity (80% population recruitment) defined in the Methods section is satisfied 

when the pacemaker percentage reaches roughly 33%.  As the pacemaker percentage 

continues to increase, the population recruitment level increases, and reaches complete 

recruitment when the pacemakers included in the network reaches 45% and 68% for 

NAP-bursters networks and CAN-bursters network respectively.  This observation 

implies that NAP-bursters have higher capability at recruiting network neurons.   

Another feature of the cluster- or network-level bursting activities, e.g. the range 

of bursting period that can be possibly generated by the network, also exhibits interesting 

variability in relation to the type of pacemakers included in the network (Panel C1 & C2, 

Figure 5-7).  As shown in Panel C1 of Figure 5-7, the median period observed in CAN-

bursters networks remain approximately the same when different percentages of 

pacemakers are included in the network; where as in the NAP-bursters networks, a wider 



www.manaraa.com

 84 

range of median burst period was observed.  Defining the “output robustness” as the 

variety of network burst activities observed, these two observations in network burst 

period in NAP-bursters networks and CAN-bursters networks indicate that the NAP-

bursters networks possess a higher level of output robustness.  Another set of simulations 

(results not shown) were also conducted, where the effects of varying levels of tonic and 

synaptic excitations were investigated.  In these simulations, the general relationship 

between pacemaker percentage and the behavior of the network remains the same, with 

higher level of synaptic excitations supporting more network-level bursting activities and 

higher population recruitment for each percentage of pacemakers included in the network 

  In Figure 5-8, where simulation results from networks with sparse synaptic 

connections were presented, one can see that conclusions qualitatively identical to the 

results from networks with all-to-all connections can be derived.  As the percentage of 

pacemakers included in the network increases, bursting activities beyond the single-cell 

level emerge with certainty, and the population recruitment level within a single burst 

increases.  In addition, the range of burst period observed in NAP-bursters network is still 

wider than that observed in CAN-bursters network, indicating higher output robustness in 

the NAP-bursters networks.  The conclusions relevant to all-to-all NAP-bursters network 

qualitatively reproduce those derived from previous modeling research based on a 

different PBC model presented by Purvis et al. 2007. 

5.4 Summary 

A new PBC model built upon our previously developed PBC neuron model 

described in Purvis et al. 2007 is introduced in this chapter.  This new model is able to 

simulate two types of pacemaking activities (e.g. CAN-bursters & NAP-bursters) 

experimentally identified in multiple publications (Pena et al. 2004; Thoby-Brisson and 

Ramirez 2001).  Different bifurcation structures underlying the two pacemaking modes 

are also identified in this chapter.  Network-level simulations investigating how different 
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percentages of different types of pacemakers within a simulated PBC region, in addition 

to different interneuron connectivity, can influence overall network-level phenomena.  

The results support the significance of pacemakers, albeit at low percentages, in naturally 

occurring neural networks.  In fact, the inclusion of pacemakers results in an immediate 

increase in the probability of multi-neuron bursting activities to 1 as well as a higher 

degree of population recruitment.  Lastly, except for a reduced output robustness 

observed in the NAP-bursters networks, networks with sparse connectivity produce 

qualitatively identical results with networks with all-to-all connectivity.   

The completion of this project where different types of pacemaking modes are 

examined at both the single-cell level and the network level establishes a simulation 

platform for investigating how modulatory agents commonly present in the transverse 

slice (e.g. serotonin, SP) can affect neuronal activities at multiple structural levels.  This 

proposition is described in more details in Chapter 7. 
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6. HYPOGLOSSAL MOTONEURON: NEUROMODULATORY 

EFFECTS VIA THE ACTIVATION OF SECOND-MESSENGER 

PATHWAYS
4
 

 

6.1 Abstract 

Respiratory motoneurons such as Hypoglossal Motoneurons (HM) are not directly 

involved in respiratory rhythmogenesis; however, their discharge pattern is an important 

determinant for alveolar ventilation through convolving with respiratory mechanics.  

Changes in respiratory motoneuron excitability are functionally important as failure to 

regulate this aspect can lead to pathological conditions (Feldman et al. 2005).  

Specifically, the excitability of HM is subject to modulation by numerous factors 

including serotonin (5HT), TRH, norepinephrine (NE), substance P (SP), pH level, as 

well as multiple protein kinases and phosphatases.   

Relevant to the scope of the research presented in this document, respiratory 

motoneurons receive tonic serotonergic modulations directly from medullary Raphé 

neurons, and excitatory innervations through the pre-motoneurons (Section 2-1).  The 

serotonergic modulation mediated by a myriad of intracellular signaling pathways is of 

special interest, since preliminary experiments in this area have shown that such 

mechanism plays an important role in the long-term plasticity of HM (Neverova et al. 

2007; Tadjalli and Peever).  In this chapter, we present results from a preliminary study 

focusing on constructing a new-generation HM model incorporating a part of the 

complex second messenger pathways downstream of serotonergic modulation known to 

be significant in the regulation of intracellular calcium dynamics.  The model facilitates 

                                                 
4
 The preliminary work presented in this chapter has been published in the form of a peer-reviewed book 

chapter, "Computational model of TASK channels and PKC-pathway dependent serotonergic modulatory 

effects in respiratory-related neurons.” Adv Exp Med Biol. 2008;605:382-6.  The author of this document 

is independently responsible for the work presented here. 
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the investigation of how neuromodulatory factors such as 5HT and pH can affect HM 

activities, and serves as a basis for further study in the area of long-term plasticity. 

6.2 Methods & Results 

The serotonergic modulation of calcium-signaling is mediated by two subtypes of 

5-HT receptors, namely, the 5-HT1A and the 5-HT2 receptors (Bayliss et al. 1997).  Both 

receptor subtypes are abundant in neonatal HM and the activation of each contributes 

differentially to the regulation of intracellular calcium profile.  Activation of 5-HT1A 

reduces current flow through N- and P/Q-type calcium channels and consequently 

inhibits after-hyperpolarization (AHP) caused by calcium-activated potassium current 

(Ladewig et al. 2004).  On the other hand, the activation of 5-HT2 receptors affects basal 

intracellular calcium concentration and has generally been linked to the PKC-pathway 

leading to calcium release from intracellular stores (Figure 6-1).  The PKC-pathway 

involves phospholipase C (PLC)-mediated production of inositol triphosphate (IP3) that 

leads to calcium release from intracellular stores and diacylglyceral (DAG) activation of 

protein kinase C leading to phosphorylation and dephosphorylation of membrane proteins. 

Neurotransmitter-induced enhancement of excitability can be mediated by 

inhibition of a resting K+ current.  TASK-1 channels, TASK-3 channels, as well as their 

heterodimers provide prominent leak K+ currents and are targets for neurotransmitter 

modulation in HMs (Berg et al. 2004).  These pH-sensitive K+ channels can be fully 

inhibited by 5-HT, NE, SP among other neuromodulators and causes depolarization 

(Talley et al. 2000).  Furthermore, it has been shown that 5-HT induced depolarizing 

current has a pH-sensitive component mediated by the TASK channels. 

In the present work, we introduce a computational HM model that includes TASK 

channel conductance as well as cellular mechanisms for the protein kinase C (PKC) 

pathway that allow for neuromodulatory effect by 5-HT. 
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Figure 6.1 Schematic representation of our working modified HM model. 

 

Our working model qualitatively reproduces features of serotonin-mediated 

effects on HM excitability.  These features include increased membrane excitability, 

decreased AHP amplitude, elevated basal intracellular calcium concentration ([Ca
2+

]i), 

and depressed [Ca
2+

]i oscillation amplitude.  We started with the HM model of Purvis and 

Butera 2005.  The total TASK-channel conductance of 3.5 nS was adopted from Talley et 

al. 2000.  As proposed in Talley et al 2000, TASK channels are considered to be fully 

inhibited with the application of 5-HT.  The mechanisms through which 5-HT receptor 

activation modulates [Ca
2+

]i can be represented by a set of three simultaneous differential 

equations (Cuthbertson and Chay 1991): 

d[G-GTP]/dt  = rg – hgRpkc[G-GTP]  (1) 

where Rpkc is the fraction of activated PKC.       

d[DAG]/dt = kdRPLC-hd*[DAG] + ld (2) 
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where RPLC is the fraction of activated PLC. 

d[Ca
2+

]i/dt = RIP3 - hc[Ca
2+

]i + lc (3) 

The preliminary results from our working model are illustrated in Figure 6-2 and 

two scenarios were investigated.  Scenario one considered 5-HT modulatory effect on 

intracellular calcium dynamics and consequently membrane electrodynamics.  Results 

from scenario one are illustrated in panel A1 and A2 of Figure 6-2.  The second scenario 

considers the effects of 5-HT on both calcium dynamics and TASK-channel conductance.  

The resulting intracellular calcium concentration profile and corresponding membrane 

potential trace are illustrated in panel B1 and B2.  Action potentials were evoked via a 

600-ms current pulse of 1 nA.  Bath application of 5-HT (25 μM) was simulated for 200 

ms and is signified by the horizontal bar in Figure 6-2.  

The simulation results indicate that 5-HT application results in reduced AHP 

amplitude and consequently a higher AP firing frequency (Figure 6-2, Panel A1).  The 

corresponding intracellular calcium profile (Figure 6-2. A2) demonstrate 5-HT 

modulatory effects characterized by an elevated basal [Ca
2+

]i and smaller oscillation 

amplitude.  The smaller oscillation amplitude is caused by calcium induced calcium  
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Figure 6.2 Simulating the serotonergic modulatory effects in HM.  Panel A1 & A2, 

simulation results from considering only the modulatory effects mediated by the PKC-pathway.  Panel B1 

& B2, simulation results from considering modulatory effects mediated by both the PKC-pathway and the 

TASK channels.  In both simulation scenarios, simulated membrane potential is shown in Panel A1 & B1; 

whereas corresponding intracellular calcium dynamics is shown in Panel A2 & B2.  The readers are 

encouraged to refer to Appendix B for the results from an improved version of this model, as well as 

Ladewig et al. 2004 for the experiment results serving as the benchmark for this study. 

 

release from the endoplasmic reticulum (Ladewig et al. 2003).  When the inhibition of 5-

HT on TASK-channel conductance is taken into consideration, the simulation results 

illustrate higher membrane excitability signified by accelerated AP firing frequency while 

the [Ca
2+

]i  profile remains unchanged from scenario one (Figure 6-2, Panel B1 & B2).  

The gradual increase in AP firing frequency can be attributed to a decrease in the fast-

transient potassium current (IA, results not shown).  

6.3 Research Significance  
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Respiratory motoneuronal excitability is subject to modulation by several 

transmitters.  Some of these modulatory effects, such as those mediated by 5-HT, are 

highly correlated with sleep-wake states and rhythmic motor activities (Murillo-

Rodriguez et al. 2009).  Activation of 5-HT receptors has been traditionally linked to the 

activation of PKC pathway.   The PKC pathway can also be activated by mGluRs, which 

are also abundantly expressed in HMs.  It has been proved that the PKC pathway is 

crucial to the induction of ivLTF in motoneurons and has a significant impact on 

intracellular calcium dynamics.  The second feature of the PKC pathway renders more 

investigation because intracellular calcium dynamics have been linked to several 

physiological and patho-physiological states (Feldman et al. 2005).  The disruption of 

calcium signaling can have detrimental effects especially in neurons such as HMs that 

have low calcium-buffering capacity (Lips and Keller 1999).  In addition to peptidergic 

and serotonergic modulations, HMs are also subject to modulation by pH values.  

Variations in pH values are associated with physiological states such as hypoxia.  The 

pH-sensitivity in HM is mediated by TASK channels, which are inhibited in acidic 

condition and activated in alkaline condition.  Excitation caused by TASK-channel 

inhibition can also be with 5-HT and occur in be parallel with the activation of PKC 

pathway (Talley et al. 2000).  

Our new HM model qualitatively reproduces observations of how 5-HT 

application can alter membrane electrodynamics both directly by inhibiting a “leak” 

conductance (TASK) and indirectly through the PKC-pathway ([Ca
2+

]i).  This new HM 

model serves as a first step to modeling how neuromodulators affect respiratory-related 

motoneuronal activity either directly or via intracellular signaling pathway at a single cell 

level.  Our next step is to modify this preliminary model so that the accelerated action 

potential firing frequency with 5-HT application falls within physiological range.  

Current implementation of the PKC-pathway can also be improved via differentiating 

effects mediated by different receptor subtypes.  Additional second-messenger pathway 
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mediated by other protein kinases such as protein kinase A (PKA) and protein kinase G 

(PKG) can also be implemented for further investigation of how each pathway affects 

HM membrane electro-dynamics, such concept is outlined in further details in Chapter 7. 
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7. SUMMARY & FUTURE DIRECTION 

 

7.1 Summary of work & limitations 

The work presented in this document can be collectively considered as a 

preliminary treatment to investigating emergent network properties at different levels of 

networks existing in the transverse slice preparation.  Starting from the level of 

intracellular networks exemplified by second-messenger pathways mediating 

neuromodulatory effects, and progressively moving toward higher structural levels, these 

networks include the network of a single nucleus (e.g. the PBC nucleus) consisting of 

identical neurons and the network of nuclei such as the transverse slice respiratory neural 

circuitry (e.g. the Raphé region, the PBC nucleus).  The construction and integration of 

the pathway model – shown to be both significant in intracellular calcium metabolism 

and crucial for mediating neuromodulatory effects – into previous single neuron models 

facilitate the investigations of how exogenous factors such as 5HT can modulate single-

cell activities (Chapter 5 & Chapter 6).  Even though the complexity of the pathway 

model presented is drastically reduced from other published pathway models (Bhalla 

2002; 2003), and studies presented in the document were conducted in isolation (e.g. 

without consider interactions with other pathways), the model has allowed for the 

qualitative reproduction of experiment observations and facilitated some preliminary 

network-level simulation work.  In one of the ensuing sub-sections, the author of this 

document proposes how considering interactive pathway models might allow future 

researchers to understand long-term plastic phenomenon dependent on both stimulus 

pattern and strength. 

Beyond the level of intracellular pathway and the level of single neuron, studies at 

the level of simulated PBC region with the improved single PBC model neuron, as well 

as with the Morris-Lecar model neuron, have also been presented in this document.  
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Based on the results from these studies, it has been shown that regardless of the 

mechanisms underlying the pacemaking properties in individual PBC neurons (Chapter 

5), a special network structure called small-world can facilitate network-level rhythmic 

activities (Chapter 3).  The interneuron coupling types and strengths, on the other hand, 

can interact and induce unexpected network-level phenomena at a time scale orders of 

magnitude larger than that of the couplings (Chapter 4).  While the results presented are 

consistent with experiment observations and other modeling works, the all-to-all 

connectivity adopted in most of the network set-ups is unrealistic.  It is the belief of the 

author of this document that more in-depth knowledge can be derived with network 

simulations adopting a small-world network topology where synaptic projections and 

gap-junctional couplings are assigned in a spatially relevant way.  In other words, for 

future studies, the network connectivity can be modified such that clusters of neurons in 

the small-world are interconnected with synapses and gap junctions, while inter-cluster 

long-range connections are achieved by synaptic projections only. 

 

Table 7.1 Major limitations of the work presented in this document. 

Major limitations of the work presented in this document 

Chapter 3 – Network Topology 

1. With improved computation 

technology, results can  be refined 

using networks with PBC model 

neurons 

2. The difference between clustered 

and long-range projections should 

also be expressed in the inter-

neuron connection strengths and/or 

types 

Chapter 4 – Inter-neuron interactions 

1. All-to-all connectivity is unrealistic, 

insights derived from Chapter 3 

were not incorporated 

2. Insufficient experiment data on the 

strengths of gap-junctional 

couplings in the PBC region 

Chapter 5 – CAN-burster & NAP-burster 
1. Simplified second-messenger 

pathway 
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2. Second-messenger pathway 

considered in isolation 

3. Calcium buffering mechanism 

unaccounted for 

4. Formulation of the Gq-term 

included in the model needs to be 

refined based on more experiment 

data 

Chapter 6 – Hypoglossal Motoneuron 

1. Simplified second-messenger 

pathway 

2. Second-messenger pathway 

considered in isolation 

3. Calcium buffering mechanism 

unaccounted for 

4. Does not account for age-dependent 

differences in the electrical 

activities of HM observed in 

experiments 

 

7.2 Proposed future studies 

Using what have been accomplished in this document as basis, several possible 

future investigations in the area of respiratory neural control and rhythmogenesis are 

described in this section. 

Pathway mediated long-term plasticity in Hypoglossal Motoneuron 

There are two types of long-term plasticity of interest observed in HMs, in vitro 

long-term facilitation (ivLTF) and in vivo long-term facilitation (LTF).  In the case of 

ivLTF, the plasticity is measured as activity-dependent postsynaptic enhancement of 

AMPA receptor function; whereas LTF is measured as an increase in respiratory motor 

output after episodic exposures to hypoxia.  Both in vivo and in vitro respiratory long-

term facilitation require mechanisms depending on intermittent, but not continuous, 5-

HT2 receptor activation, and it has been suggested that these long-lasting changes in the 

excitability involve PKC activation via the Gαq-PLC signaling pathway downstream of 

serotonin receptor activation (Feldman et al. 2005).   
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Figure 7.1 The interactions among different intracellular pathways.  The PKC-

pathway is not isolated in the intracellular space.  The upstream contributor, [Ca2+], affects 

the CAMKII-pathway, and the protein kinase C itself interacts with AC and influence the PKA-pathway 

indirectly. 

 

The PKC pathway is not isolated in the intracellular space (Bhalla 2002; 2003).  

In fact, the PKC pathway can interact with the PKA pathway via Adenylate Cyclase (AC), 

and the CAMKII pathway via intracellular calcium concentration (Figure 7-1).  The PKA 

pathway and the CAMKII pathway have long been the focus of interest in the area of 

neuroscience investigating the late long-term potentiation (late-LTP) phenomenon in the 

CA1 region of hippocampus (Smolen et al. 2006).  Previous experiment and modeling 

studies combined with experiments identifying gene transcription factors have allowed 

for investigations of how multiple kinase activities can converge and induce stimulus-

pattern dependent plasticity which occurs at a much slower time scale (Bejar et al. 2002; 

Bhalla 2002; Hayer and Bhalla 2005; Mayford 2007; Smolen et al. 2006).  By combining 
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these results from the modeling and experiment studies in areas other than respiratory 

neural control, further advances can be made to elucidate how intracellular pathways 

facilitate long-term plasticity in HMs.  An HM model simulating stimuli pattern-

dependent LTF by incorporating interacting second-messenger pathways and a calcium 

diffusion mechanism between intracellular compartments has been constructed by the 

author of this document.  A conceptual design more detailed than that presented in Figure 

7-1 as well as the simulation results were presented in SFN 2009 (Appendix C).  

However, these results are preliminary in nature and are not presented in this document. 

 
 

Figure 7.2 Significance of the serotonergic modulation from Raphé neuron: a 

preliminary study.  Part of this proposed modeling work has been accomplished by the author of this 

document (results not shown), where the reciprocal connection between a model Raphé neuron and a PBC 

model neuron (prototypical CAN-burster, see Chapter 5) results in a significantly modulated burst period.  

Recall from Chapter 5 that, contrary to that of a NAP-burster, the burst period of a prototypical CAN-

burster is resistant to depolarizing current injection. 

 

Simulated Raphé modulatory effects in the CAN- & NAP-bursters 

In addition to network-level studies presented in Chapter 5, where different types 

of pacemaking modes are examined separately at the network level, the author of this 

document has also independently completed two other relevant projects in early 2009 

(results not shown).  The first project focuses on the effects of mixing different 

percentages of CAN-bursters and NAP-bursters in a single network (e.g. a mixed-bursters 

network), and the second investigates the effects of different network topologies (e.g. 
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regular, SW, and random) in CAN-bursters, NAP-bursters, or mixed-bursters networks.  

Based on these studies, it can be concluded that in mixed-pacemakers networks, network-

level activities quickly converge to those typical of a CAN-bursters network presented in 

Chapter 5 as soon as the percentage of CAN-bursters is increased beyond 20% regardless 

of the topologies. 

This observation is especially interesting since, in addition to the differential 

changes in burst period and burst duration in response to depolarization observed in 

CAN-bursters and NAP-bursters respectively, experimental results have also shown that 

the pacemaking activities of CAN-bursters and NAP-bursters are modulated differently 

by serotonin.  To facilitate future efforts in investigating the interactions between the 

PBC region and the Raphé nucleus (RN), a Raphé model neuron simulating all the 

characteristics of typical Raphé spiking activities was constructed by the author of this 

document (Figure 7-2).  Since the new PBC model neuron presented in Chapter 5 

includes mechanisms capable of simulating neuromodulatory effects on intracellular 

[Ca
2+

] and [IP3] via G-protein coupled receptors, reciprocally coupling it with the Raphé 

mode neuron provides a model system for investigations at the paired-cell level that can 

be further extended into investigations on the relationship between the RN and the PBC 

region.  Figure 7-2 illustrates the concept for this proposed study. 

Modeling the Transverse-Slice Respiratory Neural Circuitry 

The goal of this proposed future study is to develop a next-generation transverse 

slice model that incorporates the current knowledge of the slice-level architecture with 5 

neural populations: tonically firing neurons, Raphé neurons, PBC neurons, pre-

motoneurons (preMNs), and HMs.  Simulated networks containing improved versions of 

the single-cell models with more comprehensive second-messenger pathways than those 

presented in Chapter 5 & 6 of this document can be utilized in constructing the entire 

transverse slice model.  While the inter-nuclei interactions should reflect the schematics 
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anatomically derived as illustrated in Figure 2-1, the intra-nucleus connections should 

base on the results from the investigations of the small-world topology presented in this 

document, as well as those from future investigations on the effects of physiologically 

and spatially relevant network connectivity set up.   

The incorporation of interacting second-messenger pathways at the single neuron 

level leads to a transverse slice respiratory circuitry model which puts the investigation of 

neuromodulation into a larger context.  This new frame work will facilitate in-depth 

understanding on how the respiratory neural control signals from this respiratory circuitry 

can be affected by multiple factors to result in interesting neural plasticity that is crucial 

for respiratory homeostasis, especially when the organism is in distress (e.g. hypoxia). 
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APPENDIX A 

 

The IP3-ER-Ca
2+

 mechanism 

With V representing the membrane voltage and [Ca
2+

] representing calcium 

concentration in the intracellular space, the IP3-ER-Ca
2+

 mechanisms included in the new 

generation PBC model neuron consists of the following equations:  

d[Ca
2+

] / dt = β([Ca
2+

]) ● (JERin – JERout – JEXTout) 

d[IP3] / dt = Gq(t, V) + P([Ca
2+

]) – D([IP3]) 

dw / dt = (winf - w) / τw([Ca
2+

]) 

where  

β([Ca
2+

]) = 1/{tau * [1 + Kcyt*Bcyt/((Kcyt+[Ca
2+

])^2)]} 

JERin = c1*(v1*(w*[Ca
2+

] / (d5 + [Ca
2+

]))^3 + v2)*([Ca
2+

]ER – [Ca
2+

]) - K* It 

JERout = v3*([Ca
2+

]^2) / (k3^2 + [Ca
2+

]^2) 

[Ca
2+

]ER = Calcium concentration in the ER = (1.20- [Ca
2+

])/0.185 

 It = fast inward calcium current = gt*mt*ht*(V-Eca) 

 where  

mtinf = (1 + exp(-(Vm+38)/5))^-1 

taumt = 2 + 5 / (exp((V+28) / 25) + exp(-(V+28) / 70)) 

htinf = (1 + exp((V+70.1)/7))^-1 

tauht = 1 + 20 / (exp((V+70)/65) + exp(-(V+70)/65)) 

 

dmt /dt = (mtinf-mt) / taumt 

dht / dt = (htinf-ht) / tauht 

and  

P([Ca
2+

]) = v6*[Ca
2+

] / (k6 + [Ca
2+

]); D([IP3]) = v7*[IP3] 



www.manaraa.com

 101 

winf = [IP3]*d2 / ([IP3] + d3) / (α*d2 + [Ca
2+

]) 

τw([Ca
2+

]) = 1 / (a2*( α*d2 + [Ca
2+

])) 

where 

α = 1 / ((1 + Kcyt*Bcyt) / ((Kcyt + [Ca
2+

])^2)) 

Furthermore, as detailed in Section 5.2 

JEXTout = 1 / (1+exp((V+40) / -5))● 0.26● ([Ca
2+

]^2) / (0.1 + [Ca
2+

]^2) 

 

The following table shows the parameter values used in the formulation – 

 

Table A.1 Parameter values for the IP3-ER-Ca
2+

 mechanism. 

Parameter Name Parameter Value 

gt 1 nS 

v1 6.5 

v2 0.066 

v3 0.9 

v6 0.24 

v7 0.1 

c0 2 

c1 0.185 

c2 0.19 

d1 0.13 

d2 1.05 

d3 0.943 

d5 0.0823 

a2 0.2 

Bcyt 150 

Kcan 0.8 
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Kcyt 1.5 

K 0.0005 µM/pA 

k3 0.1 

k6 0.25 

tau 0.01 msec 
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APPENDIX B 

 

The PBC neuron model, Purvis et al. 2007 & Butera et al. 1999 

The following equations for the four currents included in the original PBC neuron 

model where adopted from the appendix from Purvis et al. 2007. 

(Sodium current) Ina = gna * m∞
3
 * (1-n) * (V – Ena) 

 n∞ = 1/(1+exp(-(V+29)/4)), τn = 10; 

(Delayed rectifier current) Ik = gk * n
4
 * (V – EK) 

 n∞ = 1/(1+exp(-(V+29)/4)), τn = 10; 

(Persistent sodium current) Inap = gnap * m∞ * h * (V – Ena) 

m∞ = 1/(1+exp(-(V+45.1)/5)); 

h∞= 1/(1+exp((V+53)/6)), τh  = 10000; 

(Leak current) Ileak = gleak * (V – Eleak) 

The hypoglossal motoneuron (HM) model, Purvis et al. 2005 

The following equations for the ten currents included in the original HM model 

were adopted from the appendix from Purvis et al. 2005. 

(Sodium current) Ina = gna * m
3 
* h * (V – Ena);  

m∞ = 1/(1+exp(-(V+36)/8.5)), τm = 0.1; 

h∞= 1/(1+exp((V+44.1)/7)), τh  = 3.5/(exp((V+35)/4) + exp(-(V+35)/25)) + 1; 

(Persistent sodium current) Inap = gnap * mnap * hnap * (V – Ena); 

mnap-∞ = 1/(1+exp(-(V+47.1)/4.1), τmnap = 0.1; 

hnap-∞ = 1/(1+exp((V+65)/5), τhnap = 150; 

(Delayed rectifier current) Ik = gk * n
4
 * (V – Ek); 

 n∞ = 1/(1+exp(-(V+30)/25),  τn = 2.5/(exp((V+30)/40) + exp(-(V+30)/50)) + 0.01 

(Leak current) Ileak = gleak * (V – Eleak) 
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(Low-voltage activated calcium current) It = gt * mt * ht * (V – Eca) 

 mt-∞ = 1/(1+exp(-(V+38)/5), τmt = 5/(exp((V+28)/25) + exp(-(V+28)/70)) + 2; 

 ht-∞ = 1/(1+exp((V+70.1)/7), τht = 20/(exp((V+70)/65) + exp(-(V+70)/65)) + 1; 

(High-voltage activated current) In = gn * mn * hn * (V – Eca) 

 mn-∞ = 1/(1+exp(-(V+30)/6)), τmn = 5; 

 hn-∞ = 1/(1+exp((V+70)/3)), τhn = 25; 

(High-voltage activated current) Ip = gp * mp * (V – Eca) 

 mp-∞ = 1/(1+exp(-(V+17)/3), τmp = 10; 

(Calcium-dependent potassium current) Isk = gsk * zsk
2
 * (V – Ek) 

 zsk = 1/(1+(0.003/[Ca
2+

])
2
), τsk = 1; 

(Fast transient potassium current) Ia = ga * ma * ha * (V – Ek) 

 ma-∞ = 1/(1+exp(-(V+27)/6)), τma = 1/(exp((V+40)/5) + exp(-(V+74)/7.5)) +0.37; 

 ha-∞ = 1/(1+exp((V+80)/11)), τha = 20; 

(Hyperpolarization-activated current) Ih = gh * mh * (V – Eh) 

 mh-∞ = 1/(1+exp((V+79.8)/5.3)),  

τmh = 475/(exp((V+70)/11) + exp(-(V+70)/11)) + 50 
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APPENDIX C 

 

The preliminary transverse slice model – poster from SFN 2009 
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